CROSS-TEXT MODAL PREFERENCE SYSTEMATIZATION (CTP-S): A DYNAMIC FRAMEWORK FOR PERSONALITY PREDICTION VIA MUSIC PREFERENCES
DOI:
https://doi.org/10.71411/jassp.2025.423Keywords:
Music preferences, personality traits, CTP-S model, cross-modal mapping, dynamic predictionAbstract
Music preference, as an explicit behavioral marker of psychological traits, carries structured personality representations, yet existing research is constrained by three critical limitations: inadequate cross-cultural adaptability of Western-centric scales in interpreting non-Western music systems; neglect of cognitive dimensions in traditional models like the Big Five; and static analytical frameworks ignoring scenario-behavior dynamics.
This study proposes the Cross-Text Preference-Systematization (CTP-S) model, integrating MBTI cognitive structure, FPA motivational color theory, and CAPS situational dynamics to establish a cross-modal mapping mechanism from music preference to personality. Empirical results validate significant multi-dimensional correlations with distinct scenario dependency—introverts favor instrumental solos in private settings while extraverts prefer high-tempo music socially. The model achieves high prediction accuracy (up to 90.21% for MBI/FPA classification).
Theoretically, this work breaks through static frameworks by constructing a "cognition-motivation-context" triadic paradigm, bridging neural mechanisms and cultural theories. Methodologically, it realizes multimodal fusion of lyrics, audio, and behavioral data, offering technical paths for personalized mental health intervention and intelligent humancomputer interaction. Future research will enhance cross-cultural applicability and explore neural encoding mechanisms.
References
Alluri, V., Toiviainen, P., Jääskeläinen, I. P., Glerean, E., Sams, M., & Brattico, E. (2012). Large-scale brain networks emerge from dynamic processing of musical timbre, key and rhythm. NeuroImage, 59(4), 3677~3689. https://doi.org/10.1016/j.neuroimage. 2011.11.019
Anonymous. (2014). Music Information Retrieval: Recent Developments and Applications. FOUNDATIONS AND TRENDS IN INFORMATION RETRIEVAL, 8(2~3), 128-+. https://doi.org/10.1561/1500000042
Bhattacharya, A., Bolch, T., Mukherjee, K., King, O., Menounos, B., Kapitsa, V., Neckel, N., Yang, W., & Yao, T. (2021). Glacier elevation changes data in the High Mountain Asia derived from multitemporal digital elevation models since the 1960s [Dataset]. In PANGAEA. https://doi.org/10.1594/PANGAEA.933924
Blood, A. J., & Zatorre, R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Academy of Sciences of the United States of America, 98(20), 11818~11823. https://doi.org/10.1073/pnas.191355898
Cohen, L., Malloy, C., & Pomorski, L. (2012). Decoding Inside Information. The Journal of Finance, 67(3), 1009~1043. https://doi.org/10.1111/j.1540-6261.2012.01740.x
Fenghua, L., & Qianzhong, S. (2016). Research on the correlation between college students’ music appreciation preferences and the personality characteristics of the Big Five. Journal of Shangrao Normal University, 36(5), 100~106.
Furnham, A. (2022). The Big Five Facets and the MBTI: The Relationship between the 30 NEO-PI(R) Facets and the Four Myers-Briggs Type Indicator (MBTI) Scores. Psychology, 13(10). https://doi.org/10.4236/psych.2022.1310095
Greenberg, D. M., Baron-Cohen, S., Stillwell, D. J., Kosinski, M., & Rentfrow, P. J. (2015). Musical Preferences are Linked to Cognitive Styles. PLoS ONE, 10(7), e0131151. https://doi.org/10.1371/journal.pone.0131151
Greenberg, L. S. (2019). Theory of functioning in emotion-focused therapy. In Clinical handbook of emotion-focused therapy (p. 37~59). American Psychological Association. https://doi.org/10.1037/0000112-002
Hartman, T., & Yixi, W. (2001). Color Code: The Personality of the Four Colors. China’s Supply and Marketing Cooperative Economy, 12. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFD2001&filename=ZGGH200112037
jitwxs. (2025). Jitwxs/163MusicLyrics [C#]. https://github.com/jitwxs/163MusicLyrics (Original work published 2017)
Jung, C. G. (1923). Psychological types. Harcourt, Brace. Martínez, V., Jiménez-Molina, Á., & Gerber, M. M. (2023). Social contagion, violence, and suicide among adolescents. Current Opinion in Psychiatry, 36(3), 237~242. https://doi.org/10.1097/YCO.0000000000000858
Mas-Herrero, E., Dagher, A., Farrés-Franch, M., & Zatorre, R. J. (2021). Unraveling the Temporal Dynamics of Reward Signals in Music-Induced Pleasure with TMS. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 41(17), 3889~3899. https://doi.org/10.1523/JNEUROSCI.0727-20.2020
McFee, B., Raffel, C., Liang, D., Ellis, D., McVicar, M., Battenberg, E., & Nieto, O. (2015). librosa: Audio and Music Signal Analysis in Python. 18~24. https://doi.org/10.25080/Majora-7b98e3ed-003
Meneses, C. W., & Greenberg, L. S. (2019). Forgiveness and letting go in emotion-focused therapy. American Psychological Association. https://doi.org/10.1037/0000144-000
Mischel, W., & Shoda, Y. (1995). A Cognitive-Affective System-Theory of Personality—Reconceptualizing Situations, Dispositions, Dynamics, and Invariance in Personality Structure. PSYCHOLOGICAL REVIEW, 102(2), 246~268. https://doi.org/10.1037/0033-2 95X.102.2.246
Rentfrow, P. J., & Gosling, S. D. (2003). The do re mi’s of everyday life: The structure and personality correlates of music preferences. Journal of Personality and Social Psychology, 84(6), 1236~1256. https://doi.org/10.1037/0022-3514.84.6.1236
Salimpoor, V. N., van den Bosch, I., Kovacevic, N., McIntosh, A. R., Dagher, A., & Zatorre, R. J. (2013). Interactions Between the Nucleus Accumbens and Auditory Cortices Predict Music Reward Value. Science, 340(6129), 216~219. https://doi.org/10.1126/science.1231059
Siyi, X., & Xiaonuo, L. (2024). A review of research on MBTI personality measurement tools and personality characteristics of music students. 103~104. https://doi.org/10.26914/c.cnkihy.2024.024595
Smith, R. E. (2006). Understanding sport behavior: A cognitive-affective processing systems approach. JOURNAL OF APPLIED SPORT PSYCHOLOGY, 18(1), 1~27. https://doi.org/10.1080/10413200500471293
The history of the MBTI® assessment. (n.d.). https://eu.themyersbriggs.com/en/tools/MBTI/Myers-Briggs-history
Vella, E. J., & Mills, G. (2017). Personality, uses of music, and music preference: The influence of openness to experience and extraversion. Psychology of Music, 45(3), 338~354. https://doi.org/10.1177/0305735616658957
Vuoskoski, J. K., Zickfeld, J. H., Alluri, V., Moorthigari, V., & Seibt, B. (2022). Feeling moved by music: Investigating continuous ratings and acoustic correlates. PLOS ONE, 17(1), e0261151. https://doi.org/10.1371/journal.pone.0261151
Zhao, W. (2022). Correlation between Music Preference and College Students’ Personality Traits [Master’s Thesis, Central China Normal University]. https://doi.org/10.27159/d.cnki.ghzsu.2021.002069
Zweigenhaft, R. L. (2008). A do re mi encore: A closer look at the personality correlates of music preferences. Journal of Individual Differences, 29(1), 45~55. https://doi.org/10.1027/1614-0001.29.1.45
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Yubo Xiong (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.