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Abstract

This study mainly analyzes the application of unmanned aerial vehicle (UAV) hyperspectral
imaging technology in the field of water ecological environment damage monitoring. By
explaining the principle of hyperspectral imaging technology and combining the advantages of
flexibility and high resolution of the UAV platform, this study systematically analyzes the
application of this technology in various aspects, such as the inversion of water pollutant
concentration, eutrophication monitoring, and identification of algal blooms. It includes the
technical implementation paths and practical application cases. The research results show that
the UAV hyperspectral imaging technology can achieve rapid and accurate monitoring of water
ecological environment damage, thus providing crucial data support for forensic identification
and emergency decision-making. At the same time, considering the limitations of this technology
in the actual application process, researchers have put forward targeted optimization suggestions,
which are conducive to promoting the wider application of UAV hyperspectral imaging
technology in the field of water ecological environment damage monitoring.
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Table 1 Principles and Advantages of Hyperspectral Imaging Technology of
Unmanned Aerial Vehicles (UAVs)
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