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Abstract 

This study employs an Autoregressive Integrated Moving Average (ARIMA) model to conduct time 

series analysis and forecasting of China's nuclear power generation, aiming to provide 

quantitative basis for medium-term energy planning. Utilizing 279 monthly observations from 

May 2000 to July 2025, the research systematically evaluated 131 model specifications through 

an extended automatic ARIMA model selection procedure within the parameter space of p∈[0,6], 

d∈[0,2], and q∈[0,6]. Based on the Akaike Information Criterion (AIC), ARIMA(4,2,5) was selected 

as the optimal model with an AIC value of 2170.56. Model diagnostics revealed a root mean 

square error (RMSE) of 11.38 units, mean absolute percentage error (MAPE) of 9.86%, and Ljung-

Box test p-value of 0.0911, indicating that the model adequately captures the autocorrelation 

structure in the data. Forecast results show that China's nuclear power generation will increase 

from 430.00 hundred million kWh in August 2025 to 618.81 hundred million kWh in December 

2030, with a total growth rate of 43.91% over the forecast period and an average annual growth 

rate of 8.11%. This model provides a reliable quantitative forecasting tool for China's future 

nuclear power development planning. 
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1. Introduction  

The global energy landscape has undergone significant transformations over the past two decades, 

with nuclear power playing an increasingly important role in the transition toward low-carbon 

electricity generation systems(Khaleel et al., 2025). As nations worldwide strive to balance growing 

energy demands with environmental sustainability goals, accurate forecasting of nuclear power 

generation has become essential for strategic energy planning, grid stability management, and 

investment decision-making(Nighoskar et al., 2025). The ability to predict future nuclear power output 

with reasonable accuracy enables policymakers and energy system operators to optimize resource 

allocation, plan infrastructure development, and ensure reliable electricity supply while meeting 

carbon emission reduction targets. 

Nuclear power possesses distinct characteristics that set it apart from other energy sources, including 

high capacity factors, baseload operation capabilities, and relatively predictable output patterns 

subject to scheduled maintenance and refueling cycles(Black et al., 2023; Raihan et al., 2023). These 

characteristics make nuclear power particularly suitable for time series analysis and forecasting, as 

the underlying generation patterns often display identifiable trends, seasonal variations, and 

autocorrelation structures that can be captured through statistical modeling approaches(Song et al., 
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2023). Understanding and forecasting these patterns is crucial for countries with substantial nuclear 

power programs, where nuclear energy constitutes a significant portion of the electricity generation 

mix and plays a vital role in ensuring energy security. 

The application of time series forecasting methods to energy systems has evolved considerably with 

advances in statistical modeling techniques and computational capabilities(Meenal et al., 2022; Zheng 

et al., 2023). Among the various forecasting methodologies available, Autoregressive Integrated 

Moving Average (ARIMA) models have demonstrated robust performance in capturing the temporal 

dynamics of energy generation data(Zhang et al., 2022). ARIMA models offer several advantages for 

nuclear power forecasting, including their ability to handle non-stationary data through differencing 

operations, their flexibility in modeling both short-term and long-term dependencies, and their well-

established theoretical foundations that facilitate model selection and validation 

procedures(Bórawski et al., 2024). The Box-Jenkins methodology provides a systematic framework for 

ARIMA model identification, estimation, and diagnostic checking, making it particularly suitable for 

analyzing complex energy generation time series(Hossain et al., 2025). 

Previous research in energy forecasting has explored various approaches ranging from traditional 

statistical methods to advanced machine learning techniques(Devaraj et al., 2021; Kaur et al., 2022; 

Makridakis et al., 2023). Classical time series models, including exponential smoothing and ARIMA 

variations, continue to demonstrate competitive performance, particularly when dealing with data 

that exhibits clear temporal patterns and when interpretability is valued alongside prediction 

accuracy(Kashpruk et al., 2023). The selection of appropriate model orders through information 

criteria such as the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) 

enables data-driven model specification that balances model complexity with goodness of fit(Murari 

et al., 2023). Furthermore, the diagnostic tools available for ARIMA models, including residual analysis 

and autocorrelation tests, provide valuable insights into model adequacy and potential areas for 

improvement. 
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Figure 1. Systematic methodology flowchart for ARIMA-based nuclear power generation 

forecasting. 

This study presents a comprehensive time series analysis of monthly nuclear power generation data 

spanning from May 2000 to July 2025, encompassing 279 observations that capture the evolution of 

nuclear power output over a quarter-century period. As shown in Figure 1, the research employs a 

systematic methodology that progresses from data preprocessing through model selection to 
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forecasting. The analytical framework utilizes an enhanced automatic ARIMA model selection 

procedure with an expanded parameter search space to identify the optimal model specification 

through iterative evaluation based on information criteria. The selected model undergoes rigorous 

diagnostic testing and validation before generating forecasts for nuclear power generation from 

August 2025 through December 2030. This extended forecast horizon of approximately five and a 

half years provides valuable insights for medium-term energy planning and policy formulation, 

offering quantitative projections that can inform infrastructure investment decisions and capacity 

expansion strategies. 

2. Methods 

2.1 Data Description and Preprocessing 

The dataset comprises monthly nuclear power generation measurements spanning from May 2000 

to July 2025, totaling 279 observations after removing missing values. Each observation represents 

power generation in units of 100 million kilowatt-hours (kWh). Preprocessing involved chronologically 

ordering the data and systematic removal of missing values to ensure temporal continuity for time 

series modeling. All data used in this study were obtained from the official database of the National 

Bureau of Statistics of China (https://data.stats.gov.cn/). 

2.2 ARIMA Model Framework 

The Autoregressive Integrated Moving Average (ARIMA) model, denoted as ARIMA(p,d,q), serves as 

the primary forecasting methodology. The general form of an ARIMA model can be expressed as: 

𝜙(𝐵)(1 − 𝐵)𝑑𝑦𝑡 = 𝜃(𝐵)𝜖𝑡 

where 𝜙(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵
2−. . . −𝜙𝑝𝐵

𝑝  represents the autoregressive polynomial of order p, 

𝜃(𝐵) = 1 + 𝜃1𝐵 + 𝜃2𝐵
2+. . . +𝜃𝑞𝐵

𝑞  denotes the moving average polynomial of order q, B is the 

backshift operator, d indicates the degree of differencing, 𝑦𝑡  is the observed value at time t, and 𝜖𝑡 

represents white noise with variance 𝜎2. 

2.3 Model Selection Procedure 

The optimal ARIMA model was identified through systematic evaluation of parameter combinations 

within expanded ranges: p ∈ [0,6], d ∈ [0,2], and q ∈ [0,6]. Model complexity was constrained by 

limiting p + q ≤ 10 to balance model sophistication with overfitting prevention. This expanded search 

space enables the identification of more intricate temporal patterns that may exist in the data. The 

Akaike Information Criterion (AIC) served as the primary selection metric: 

𝐴𝐼𝐶 = −2ln(𝐿) + 2𝑘 

where L represents the maximum likelihood of the model and k denotes the number of parameters. 

The model yielding the minimum AIC value was selected for forecasting. 

2.4 Diagnostic Testing 

Model adequacy was assessed through multiple diagnostic procedures. The Ljung-Box test evaluated 

residual autocorrelation, testing the null hypothesis that residuals are independently distributed. 

Additionally, normality assumptions were examined using Q-Q plots and residual distribution analysis. 

The test statistic for the Ljung-Box test at lag h is given by: 

𝑄 = 𝑛(𝑛 + 2)∑  

ℎ

𝑘=1

𝜌̂𝑘
2

𝑛 − 𝑘
 

where n is the sample size and 𝜌̂𝑘 represents the sample autocorrelation at lag k. 

 

3. Results and Analysis 

https://data.stats.gov.cn/


Vol. 1, No. 1, 2025  35  

 Research Articl e 

 

 

E ngineering  F rontiers : Jul. 2025                                            www.zgjzwh.com.cn 
https://doi.org/10.71411/ef.2025.v1i1.939 

 

3.1 Exploratory Data Analysis 

The time series exhibited significant fluctuations over the 25-year observation period, with generation 

values ranging from a minimum of 7.50 to a maximum of 430.00 units (100 million kWh). The mean 

generation stood at 143.39 units with a standard deviation of 128.06, indicating substantial volatility 

in nuclear power output. Figure 2a illustrates the overall trend in nuclear power generation, showing 

a general upward trajectory in average output over the years. 

Moving average analysis, as shown in Figure 2b, employed both 12-month and 24-month windows to 

smooth short-term fluctuations and reveal underlying patterns. The study identified three distinct 

phases in China's nuclear power generation: a period of slow growth before 2013, a phase of rapid 

expansion between approximately 2013 and 2020, followed by a moderation in growth rate after 2020. 
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Figure 2. Nuclear Power Generation Time Series (a); Moving Average Analysis (b); First 

Differenced Series (c); Seasonal Pattern (d). 

The first differenced series, presented in Figure 2c, demonstrates the transformation required to 

achieve stationarity. The differenced values fluctuate around zero, with heightened volatility observed 

during 2003 and the 2013–2024 period. Figure 2d reveals distinct seasonal patterns, with lower 

average generation observed in January and February, while relatively consistent output levels are 

maintained during the rest of the year. This pattern reflects seasonal variations in China's nuclear 

power generation and potential maintenance schedules. 

3.2 Model Identification and Selection 

The autocorrelation function (ACF) and partial autocorrelation function (PACF) analyses, presented in 

Figure 3, provided crucial insights for model identification. The ACF displays a gradual decay pattern 

characteristic of non-stationary series, supporting the need for differencing(Nikseresht & Amindavar, 

2025; Saghafi & Mili, 2025). The PACF shows significant spikes at early lags, suggesting the presence 

of autoregressive components(Schaffer et al., 2021). 

The enhanced systematic model selection process evaluated 131 successfully converged ARIMA 

specifications out of 147 potential combinations. The search process, completed in 53.4 seconds, 
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identified the optimal model ARIMA(4,2,5), which achieved the lowest AIC value of 2170.56. This 

represents an improvement from the simpler ARIMA(2,1,3) model, which was identified as the best 

model by BIC (2201.17), highlighting the trade-off between model complexity and parsimony. 
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Figure 3. Autocorrelation Function (a); Partial Autocorrelation Function (b). 

The selected ARIMA(4,2,5) model incorporates four autoregressive terms (p=4), second-order 

differencing (d=2), and five moving average terms (q=5). The estimated parameters reveal AR 

coefficients of 0.2996, -0.4441, -0.5531, and 0.3430, and MA coefficients of -1.7764, 1.1657, -0.0005, -

1.0000, and 0.6459, with an estimated variance of 129.42. The complexity of this model structure (p+q 

= 9) reflects the intricate dynamics underlying nuclear power generation patterns and the enhanced 

model's ability to capture more sophisticated temporal relationships. 

3.3 Model Diagnostics and Validation 

Figure 4 presents comprehensive diagnostic results for the fitted ARIMA(4,2,5) model. The forecast 

visualization demonstrates the model's projection from August 2025 through December 2030, with 

the 95% confidence interval widening progressively as the forecast horizon extends, reflecting 

increasing uncertainty. The forecast initiates at 430.00 units for August 2025 and reaches 618.81 units 

by December 2030, representing a substantial total growth of 43.91% over the forecast period. 

Residuals fluctuate randomly around zero throughout the historical period, though some clustering 

of volatility is evident. The residual distribution histogram approximates a normal distribution with 

slight deviations in the tails, while the Q-Q plot shows reasonable adherence to normality 

assumptions despite minor departures at the extremes. 

Model performance metrics indicate excellent fit quality with a root mean square error (RMSE) of 

11.3763 units and a mean absolute error (MAE) of 8.2532 units. The mean absolute percentage error 

(MAPE) as low as 9.86% suggests strong prediction accuracy, representing an improvement from 

simpler model specifications. Notably, the Ljung-Box test yielded a p-value of 0.0911, failing to reject 

the null hypothesis of uncorrelated residuals at the 5% significance level, indicating that the enhanced 

model successfully captures the autocorrelation structure in the data(Hassani et al., 2025). 

3.4 Forecast Analysis and Implications 

The forecast results indicate robust growth in nuclear power generation from 2025 to 2030. Annual 

projections show a consistent increase in average generation capacity, rising from 412.67 units in 

2025 to 587.53 units in 2030, representing an average annual growth rate of 8.11%. 

Examination of key forecast milestones shows generation reaching 432.18 units by January 2026, 
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506.82 units by January 2028, and 559.34 units by January 2030. The forecast exhibits a sustained 

upward trajectory throughout the projection period, with confidence intervals expanding from 

approximately ±23 units in early periods to ±120 units by the end of 2030. 
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Figure 4. ARIMA(4,2,5) Forecast: Aug 2025 - Dec 2030 (a); Model Residuals (b) ; Residual 

Distribution (c); Q-Q Plot (d). 

The forecast statistics indicate an average generation of 501.94 units over the entire forecast period, 

with values ranging from a minimum of 393.50 to a maximum of 618.81 units. The standard deviation 

of 60.70 units in the forecast reflects moderate variability around the central trend. These projections 

suggest an accelerated expansion phase for nuclear power generation, likely driven by aggressive 

policy initiatives supporting clean energy transitions, technological improvements in reactor efficiency, 

and China's commitment to carbon neutrality by 2060(Guo et al., 2023; Zhao et al., 2025). 

 

4. Conclusion 

This study successfully developed an ARIMA(4,2,5) model for forecasting China's nuclear power 

generation from 2025 to 2030, demonstrating excellent fitting performance and prediction accuracy. 

The main contributions of this research are as follows: First, by extending the parameter search space 

(p+q≤10), more complex time series patterns were identified, enabling more accurate capture of the 

inherent dynamic characteristics of nuclear power generation compared to traditional simplified 

models. Second, the model forecasts indicate that China's nuclear power will maintain robust growth 

momentum, with an average annual growth rate of 8.11% during the forecast period, reflecting the 

considerable potential for China's future nuclear power development. Third, the research provides 

important references for optimizing nuclear power operation scheduling and capacity planning. This 

study provides robust quantitative tools for energy system planners and policymakers, facilitating 

optimal resource allocation and infrastructure investment strategy formulation, ensuring electricity 

supply security while achieving carbon emission reduction targets. 
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