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Abstract

This study employs an Autoregressive Integrated Moving Average (ARIMA) model to conduct time
series analysis and forecasting of China's nuclear power generation, aiming to provide
qguantitative basis for medium-term energy planning. Utilizing 279 monthly observations from
May 2000 to July 2025, the research systematically evaluated 131 model specifications through
an extended automatic ARIMA model selection procedure within the parameter space of pe[0,6],
de[0,2], and g€[0,6]. Based on the Akaike Information Criterion (AIC), ARIMA(4,2,5) was selected
as the optimal model with an AIC value of 2170.56. Model diagnostics revealed a root mean
square error (RMSE) of 11.38 units, mean absolute percentage error (MAPE) of 9.86%, and Ljung-
Box test p-value of 0.0911, indicating that the model adequately captures the autocorrelation
structure in the data. Forecast results show that China's nuclear power generation will increase
from 430.00 hundred million kWh in August 2025 to 618.81 hundred million kWh in December
2030, with a total growth rate of 43.91% over the forecast period and an average annual growth
rate of 8.11%. This model provides a reliable quantitative forecasting tool for China's future
nuclear power development planning.
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1. Introduction

The global energy landscape has undergone significant transformations over the past two decades,
with nuclear power playing an increasingly important role in the transition toward low-carbon
electricity generation systems(Khaleel et al., 2025). As nations worldwide strive to balance growing
energy demands with environmental sustainability goals, accurate forecasting of nuclear power
generation has become essential for strategic energy planning, grid stability management, and
investment decision-making(Nighoskar et al., 2025). The ability to predict future nuclear power output
with reasonable accuracy enables policymakers and energy system operators to optimize resource
allocation, plan infrastructure development, and ensure reliable electricity supply while meeting
carbon emission reduction targets.

Nuclear power possesses distinct characteristics that set it apart from other energy sources, including
high capacity factors, baseload operation capabilities, and relatively predictable output patterns
subject to scheduled maintenance and refueling cycles(Black et al., 2023; Raihan et al., 2023). These
characteristics make nuclear power particularly suitable for time series analysis and forecasting, as
the underlying generation patterns often display identifiable trends, seasonal variations, and
autocorrelation structures that can be captured through statistical modeling approaches(Song et al.,
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2023). Understanding and forecasting these patterns is crucial for countries with substantial nuclear
power programs, where nuclear energy constitutes a significant portion of the electricity generation
mix and plays a vital role in ensuring energy security.

The application of time series forecasting methods to energy systems has evolved considerably with
advances in statistical modeling techniques and computational capabilities(Meenal et al., 2022; Zheng
et al., 2023). Among the various forecasting methodologies available, Autoregressive Integrated
Moving Average (ARIMA) models have demonstrated robust performance in capturing the temporal
dynamics of energy generation data(Zhang et al., 2022). ARIMA models offer several advantages for
nuclear power forecasting, including their ability to handle non-stationary data through differencing
operations, their flexibility in modeling both short-term and long-term dependencies, and their well-
established theoretical foundations that facilitate model selection and validation
procedures(Borawski et al., 2024). The Box-Jenkins methodology provides a systematic framework for
ARIMA model identification, estimation, and diagnostic checking, making it particularly suitable for
analyzing complex energy generation time series(Hossain et al., 2025).

Previous research in energy forecasting has explored various approaches ranging from traditional
statistical methods to advanced machine learning techniques(Devaraj et al., 2021; Kaur et al., 2022;
Makridakis et al., 2023). Classical time series models, including exponential smoothing and ARIMA
variations, continue to demonstrate competitive performance, particularly when dealing with data
that exhibits clear temporal patterns and when interpretability is valued alongside prediction
accuracy(Kashpruk et al., 2023). The selection of appropriate model orders through information
criteria such as the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC)
enables data-driven model specification that balances model complexity with goodness of fit(Murari
etal.,, 2023). Furthermore, the diagnostic tools available for ARIMA models, including residual analysis
and autocorrelation tests, provide valuable insights into model adequacy and potential areas for
improvement.
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Figure 1. Systematic methodology flowchart for ARIMA-based nuclear power generation
forecasting.

This study presents a comprehensive time series analysis of monthly nuclear power generation data
spanning from May 2000 to July 2025, encompassing 279 observations that capture the evolution of
nuclear power output over a quarter-century period. As shown in Figure 1, the research employs a
systematic methodology that progresses from data preprocessing through model selection to
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forecasting. The analytical framework utilizes an enhanced automatic ARIMA model selection
procedure with an expanded parameter search space to identify the optimal model specification
through iterative evaluation based on information criteria. The selected model undergoes rigorous
diagnostic testing and validation before generating forecasts for nuclear power generation from
August 2025 through December 2030. This extended forecast horizon of approximately five and a
half years provides valuable insights for medium-term energy planning and policy formulation,
offering quantitative projections that can inform infrastructure investment decisions and capacity
expansion strategies.
2. Methods
2.1 Data Description and Preprocessing
The dataset comprises monthly nuclear power generation measurements spanning from May 2000
to July 2025, totaling 279 observations after removing missing values. Each observation represents
power generation in units of 100 million kilowatt-hours (kWh). Preprocessing involved chronologically
ordering the data and systematic removal of missing values to ensure temporal continuity for time
series modeling. All data used in this study were obtained from the official database of the National
Bureau of Statistics of China (https://data.stats.gov.cn/).
2.2 ARIMA Model Framework
The Autoregressive Integrated Moving Average (ARIMA) model, denoted as ARIMA(p,d,q), serves as
the primary forecasting methodology. The general form of an ARIMA model can be expressed as:

¢(B)(1 - B)y, = 0(B)e,
where ¢(B) =1 —¢,B — ¢p,B*—...—¢,B? represents the autoregressive polynomial of order p,
6(B) =1+ 6,B+6,B*°+...+6,B? denotes the moving average polynomial of order g, B is the
backshift operator, d indicates the degree of differencing, y, is the observed value at time t, and e,
represents white noise with variance 2.
2.3 Model Selection Procedure
The optimal ARIMA model was identified through systematic evaluation of parameter combinations
within expanded ranges: p € [0,6], d € [0,2], and g € [0,6]. Model complexity was constrained by
limiting p + g < 10 to balance model sophistication with overfitting prevention. This expanded search
space enables the identification of more intricate temporal patterns that may exist in the data. The
Akaike Information Criterion (AIC) served as the primary selection metric:

AIC = —2In(L) + 2k

where L represents the maximum likelihood of the model and k denotes the number of parameters.
The model yielding the minimum AIC value was selected for forecasting.
2.4 Diagnostic Testing
Model adequacy was assessed through multiple diagnostic procedures. The Ljung-Box test evaluated
residual autocorrelation, testing the null hypothesis that residuals are independently distributed.
Additionally, normality assumptions were examined using Q-Q plots and residual distribution analysis.
The test statistic for the Ljung-Box test at lag h is given by:

A2
Pk

h
Q=n(n+2)z —
k=1

where n is the sample size and p, represents the sample autocorrelation at lag k.

3. Results and Analysis
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3.1 Exploratory Data Analysis

The time series exhibited significant fluctuations over the 25-year observation period, with generation
values ranging from a minimum of 7.50 to a maximum of 430.00 units (100 million kWh). The mean
generation stood at 143.39 units with a standard deviation of 128.06, indicating substantial volatility
in nuclear power output. Figure 2a illustrates the overall trend in nuclear power generation, showing
a general upward trajectory in average output over the years.

Moving average analysis, as shown in Figure 2b, employed both 12-month and 24-month windows to
smooth short-term fluctuations and reveal underlying patterns. The study identified three distinct
phases in China's nuclear power generation: a period of slow growth before 2013, a phase of rapid
expansion between approximately 2013 and 2020, followed by a moderation in growth rate after 2020.
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Figure 2. Nuclear Power Generation Time Series (a); Moving Average Analysis (b); First
Differenced Series (c); Seasonal Pattern (d).

The first differenced series, presented in Figure 2c, demonstrates the transformation required to
achieve stationarity. The differenced values fluctuate around zero, with heightened volatility observed
during 2003 and the 2013-2024 period. Figure 2d reveals distinct seasonal patterns, with lower
average generation observed in January and February, while relatively consistent output levels are
maintained during the rest of the year. This pattern reflects seasonal variations in China's nuclear
power generation and potential maintenance schedules.

3.2 Model Identification and Selection

The autocorrelation function (ACF) and partial autocorrelation function (PACF) analyses, presented in
Figure 3, provided crucial insights for model identification. The ACF displays a gradual decay pattern
characteristic of non-stationary series, supporting the need for differencing(Nikseresht & Amindavar,
2025; Saghafi & Mili, 2025). The PACF shows significant spikes at early lags, suggesting the presence
of autoregressive components(Schaffer et al., 2021).

The enhanced systematic model selection process evaluated 131 successfully converged ARIMA
specifications out of 147 potential combinations. The search process, completed in 53.4 seconds,
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identified the optimal model ARIMA(4,2,5), which achieved the lowest AIC value of 2170.56. This
represents an improvement from the simpler ARIMA(2,1,3) model, which was identified as the best
model by BIC (2201.17), highlighting the trade-off between model complexity and parsimony.

a 1 T T T T T T T b 1
0.8 . 0.8
0.6 | 0.6
L 0.41 W 04F
g g
0.2f ! 0.
0 0 { ° - T . hd +° .T ]
I Pi TR
0.2} | | | | | 1 0.2f 1
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Lag Lag

Figure 3. Autocorrelation Function (a); Partial Autocorrelation Function (b).

The selected ARIMA(4,2,5) model incorporates four autoregressive terms (p=4), second-order
differencing (d=2), and five moving average terms (g=5). The estimated parameters reveal AR
coefficients of 0.2996, -0.4441, -0.5531, and 0.3430, and MA coefficients of -1.7764, 1.1657, -0.0005, -
1.0000, and 0.6459, with an estimated variance of 129.42. The complexity of this model structure (p+q
= 9) reflects the intricate dynamics underlying nuclear power generation patterns and the enhanced
model's ability to capture more sophisticated temporal relationships.

3.3 Model Diagnostics and Validation

Figure 4 presents comprehensive diagnostic results for the fitted ARIMA(4,2,5) model. The forecast
visualization demonstrates the model's projection from August 2025 through December 2030, with
the 95% confidence interval widening progressively as the forecast horizon extends, reflecting
increasing uncertainty. The forecast initiates at 430.00 units for August 2025 and reaches 618.81 units
by December 2030, representing a substantial total growth of 43.91% over the forecast period.
Residuals fluctuate randomly around zero throughout the historical period, though some clustering
of volatility is evident. The residual distribution histogram approximates a normal distribution with
slight deviations in the tails, while the Q-Q plot shows reasonable adherence to normality
assumptions despite minor departures at the extremes.

Model performance metrics indicate excellent fit quality with a root mean square error (RMSE) of
11.3763 units and a mean absolute error (MAE) of 8.2532 units. The mean absolute percentage error
(MAPE) as low as 9.86% suggests strong prediction accuracy, representing an improvement from
simpler model specifications. Notably, the Ljung-Box test yielded a p-value of 0.0911, failing to reject
the null hypothesis of uncorrelated residuals at the 5% significance level, indicating that the enhanced
model successfully captures the autocorrelation structure in the data(Hassani et al., 2025).

3.4 Forecast Analysis and Implications

The forecast results indicate robust growth in nuclear power generation from 2025 to 2030. Annual
projections show a consistent increase in average generation capacity, rising from 412.67 units in
2025 to 587.53 units in 2030, representing an average annual growth rate of 8.11%.

Examination of key forecast milestones shows generation reaching 432.18 units by January 2026,
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506.82 units by January 2028, and 559.34 units by January 2030. The forecast exhibits a sustained
upward trajectory throughout the projection period, with confidence intervals expanding from
approximately +23 units in early periods to +120 units by the end of 2030.
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Figure 4. ARIMA(4,2,5) Forecast: Aug 2025 - Dec 2030 (a); Model Residuals (b) ; Residual
Distribution (c); Q-Q Plot (d).

The forecast statistics indicate an average generation of 501.94 units over the entire forecast period,
with values ranging from a minimum of 393.50 to a maximum of 618.81 units. The standard deviation
of 60.70 units in the forecast reflects moderate variability around the central trend. These projections
suggest an accelerated expansion phase for nuclear power generation, likely driven by aggressive
policy initiatives supporting clean energy transitions, technological improvements in reactor efficiency,
and China's commitment to carbon neutrality by 2060(Guo et al., 2023; Zhao et al., 2025).

4. Conclusion

This study successfully developed an ARIMA(4,2,5) model for forecasting China's nuclear power
generation from 2025 to 2030, demonstrating excellent fitting performance and prediction accuracy.
The main contributions of this research are as follows: First, by extending the parameter search space
(p+g<10), more complex time series patterns were identified, enabling more accurate capture of the
inherent dynamic characteristics of nuclear power generation compared to traditional simplified
models. Second, the model forecasts indicate that China's nuclear power will maintain robust growth
momentum, with an average annual growth rate of 8.11% during the forecast period, reflecting the
considerable potential for China's future nuclear power development. Third, the research provides
important references for optimizing nuclear power operation scheduling and capacity planning. This
study provides robust quantitative tools for energy system planners and policymakers, facilitating
optimal resource allocation and infrastructure investment strategy formulation, ensuring electricity
supply security while achieving carbon emission reduction targets.
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