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Abstract

Heart failure represents a significant global health challenge with substantial mortality rates. This
study develops and validates a logistic regression-based predictive model for mortality risk
assessment in heart failure patients using comprehensive clinical records. Analyzing data from
299 patients across 12 clinical features, we achieved a model performance with an area under
the receiver operating characteristic curve (AUC-ROC) of 0.872 and accuracy of 80.0%. Our
analysis identified follow-up time (coefficient: -1.622, p<0.001), ejection fraction (coefficient: -
1.159, p<0.001), age (coefficient: +0.541, p=0.018), and serum creatinine (coefficient: +0.429,
p=0.062) as the most influential predictors of mortality. The model demonstrates robust
calibration characteristics and provides clinically actionable risk stratification, suggesting its
potential utility in supporting clinical decision-making for heart failure patient management and
personalized treatment planning.
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1 Introduction

Heart failure constitutes a major cardiovascular syndrome characterized by the heart's
diminished capacity to adequately pump blood throughout the circulatory system, affecting
approximately 64.3 million individuals worldwide with prevalence rates continuing to rise in
aging populations (Khandelwal & Gupta, 2023). Despite advances in therapeutic interventions
and management strategies, heart failure remains associated with substantial morbidity and
mortality, with five-year survival rates comparable to many malignant neoplasms (Stewart et al.,
2001). The heterogeneous nature of heart failure progression and the complex interplay of
multiple clinical, biochemical, and physiological factors create significant challenges in accurately
predicting patient outcomes and optimizing treatment strategies (Lourida & Louridas, 2022).
Consequently, there exists a compelling clinical need for robust, data-driven predictive models
capable of identifying high-risk patients who may benefit from more intensive monitoring and
therapeutic interventions (Lyu, 2025).

Traditional risk stratification approaches in heart failure have relied heavily on clinical judgment
and established scoring systems such as the Seattle Heart Failure Model and the MAGGIC risk
score (Siddigi et al., 2022). However, these conventional methods often exhibit limitations in
capturing the multifaceted relationships between diverse clinical variables and patient outcomes.
The advent of machine learning techniques has opened new avenues for developing more
sophisticated predictive models that can uncover complex, non-linear patterns within clinical
data (Ahmed et al., 2020). Among various algorithmic approaches, logistic regression maintains
particular relevance in clinical applications due to its inherent interpretability, probabilistic
output, and well-established statistical framework, enabling clinicians to understand not only
prediction outcomes but also the relative contribution of individual risk factors (Cuzzocrea et al.,
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2025).

Recent investigations have demonstrated the feasibility of applying machine learning
methodologies to heart failure datasets, with studies utilizing various algorithms including
support vector machines, random forests, and neural networks (Rimal et al., 2025). However,
many such approaches sacrifice interpretability for marginal gains in predictive performance,
potentially limiting their clinical utility where understanding the mechanistic basis of predictions
remains paramount (Ng et al., 2023). Furthermore, comprehensive investigations systematically
examining the relative importance and statistical significance of multiple clinical biomarkers
within a unified predictive framework remain relatively sparse in the literature (Al-Tashi et al.,
2023). This gap underscores the necessity for transparent, clinically interpretable models that
can simultaneously achieve robust predictive performance while elucidating the specific
contributions of individual risk factors.

The present investigation addresses these considerations by developing and rigorously
validating a logistic regression-based predictive model for mortality risk in heart failure patients.
Our approach leverages a comprehensive clinical dataset encompassing demographic
characteristics, laboratory biomarkers, and comorbidity profiles to construct a transparent,
interpretable prediction framework. We systematically evaluate model performance across
multiple metrics, conduct detailed feature importance analysis with statistical significance
testing, and examine model calibration characteristics to ensure reliability across different risk
strata. Through this multifaceted analytical approach, we aim to provide clinically actionable
insights that can inform patient risk stratification, guide therapeutic decision-making, and
ultimately contribute to improved outcomes in heart failure management. The methodology
emphasizes not only predictive accuracy but also clinical interpretability and practical
applicability, thereby bridging the gap between advanced analytical techniques and bedside
clinical practice.

2 Methods

2.1 Dataset and Study Population

The analytical framework employed a comprehensive clinical dataset comprising 299 patients
diagnosed with heart failure, with follow-up periods extending up to 285 days. The dataset
encompassed 12 distinct clinical and laboratory variables systematically collected during routine
clinical assessment and monitoring. Specifically, demographic parameters included patient age
(measured in years) and biological sex (binary encoding), while clinical characteristics comprised
ejection fraction (expressed as percentage of blood volume expelled per cardiac contraction),
systolic blood pressure categorization, and binary indicators for comorbid conditions including
anemia, diabetes mellitus, and active smoking status. Laboratory biomarkers incorporated
serum creatinine concentration (mg/dL), reflecting renal function; serum sodium levels (mEqg/L),
indicating electrolyte homeostasis; creatinine phosphokinase activity (mcg/L), associated with
cardiac muscle damage; and platelet count (kiloplatelets/mL). The temporal dimension was
captured through the follow-up time variable (measured in days), representing the duration
between initial clinical assessment and either mortality event or study conclusion. The primary
outcome variable constituted a binary indicator of mortality status, with 96 patients (32.1%)
experiencing death events during the observation period and 203 patients (67.9%) surviving until
study termination or loss to follow-up.

Prior to model development, comprehensive exploratory data analysis was conducted to
examine distributional properties, identify potential outliers, and assess relationships between
predictor variables and the mortality outcome. Statistical comparisons between survived and
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deceased patient cohorts revealed significant differences across multiple clinical parameters.
Specifically, patients who experienced mortality events demonstrated significantly elevated
mean age (65.2 + 13.2 years versus 58.8 + 10.6 years in survivors, p<0.001), substantially reduced
ejection fraction (33.5 £ 12.5% versus 40.3 + 10.9% in survivors, p<0.001), markedly elevated
serum creatinine concentrations (1.84 + 1.47 mg/dL versus 1.18 + 0.65 mg/dL in survivors,
p<0.001), and considerably shortened follow-up duration (70.9 + 62.4 days versus 158.3 £ 67.7
days in survivors, p<0.001), indicating earlier mortality in this cohort. These preliminary findings
provided initial evidence for the discriminative capacity of these clinical variables and informed
subsequent model development strategies.
2.2 Data Preprocessing and Standardization
To ensure optimal model performance and numerical stability during parameter estimation,
rigorous data preprocessing protocols were implemented. The complete dataset underwent
random permutation to eliminate potential ordering effects, followed by stratified partitioning
into training and testing subsets using a 70:30 allocation ratio. This resulted in a training cohort
of 209 patients (68 mortality events, 141 survivors) utilized for model parameter estimation, and
an independent test cohort of 90 patients (28 mortality events, 62 survivors) reserved exclusively
for unbiased performance evaluation. The specific train-test split ratio was selected to balance
the competing objectives of providing sufficient data for robust parameter estimation while
maintaining an adequately sized holdout set for reliable performance assessment. To maintain
experimental reproducibility, a fixed random seed (seed=42) was employed for the random
partitioning procedure.
Feature standardization was accomplished through z-score normalization, transforming each
predictor variable to zero mean and unit variance based on training set statistics. Mathematically,
for each feature x; in the training set, the normalized value z; was computed as:
Xi—H

Zi=— D
where pu represents the feature mean and o denotes the standard deviation calculated
exclusively from training data. Critically, the identical transformation parameters (u and o)
derived from the training set were subsequently applied to normalize the test set, thereby
preventing information leakage and ensuring the test set remained truly independent. This
standardization procedure serves multiple methodological purposes: it eliminates scale-
dependent effects that could disproportionately influence parameter estimates, facilitates direct
comparison of regression coefficients as indicators of relative feature importance, enhances
numerical conditioning of the optimization problem, and accelerates convergence during
iterative parameter estimation procedures.
2.3 Logistic Regression Model Development
The predictive modeling framework employed logistic regression, a generalized linear model
particularly well-suited for binary classification tasks with probabilistic interpretation. The
fundamental architecture posits that the probability of mortality event occurrence, denoted
as P(Y =11 X), follows a logistic transformation of a linear combination of predictor variables.
Formally, the model is specified as:

1

1+ exp (—(Bo + By + Boy + -+ Bpy) )
where Y represents the binary mortality outcome, X = (x,x,,..,x,)" denotes the vector
of p predictor variables (in this investigation, p = 12), B, constitutes the intercept term,
and py,B,, ..., B, represent the regression coefficients quantifying the association between each
predictor and the log-odds of mortality. The logistic function, also termed the sigmoid function,

P(Y=1]X) = 2)
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constrains predicted probabilities to the interval [0,1], ensuring interpretable probabilistic
outputs regardless of the magnitude of the linear predictor.

Equivalently, the model can be expressed in terms of the logit transformation, which linearizes
the relationship between predictors and outcome:

P(Y = 1|X)
l°g<1 P(Y = 1|X)> Bo+ Z Bjxi ®)

This formulation reveals that each regression coefficient ﬁj represents the change in log-odds
of mortality associated with a one-unit increase in the corresponding predictor variable, holding
all other variables constant. For standardized predictors, this corresponds to the change in log-
odds per one standard deviation increase in the original feature scale.

Parameter estimation was performed using maximum likelihood estimation (MLE), which
identifies the coefficient values that maximize the probability of observing the actual outcomes
given the predictor variables. The log-likelihood function for the logistic regression model is:

n

€)= ) [yilog( + (1 - y) log(1 — py)] @
i=1

where n represents the number of training observations, y; denotes the observed outcome for
patient i, p; =P(Y =11X;) represents the predicted probability for patient i, and B =
(Bo, B, -, Bp)T constitutes the complete parameter vector. The optimization procedure employs
iteratively reweighted least squares (IRLS) algorithm, which converges to the maximum
likelihood estimates through sequential quadratic approximations of the log-likelihood surface.
Statistical inference regarding individual coefficient significance was conducted through Wald
tests, evaluating the null hypothesis H,: 8; = 0 for each predictor, with p-values computed from
the standard normal distribution of the test statistic z; = f;/SE(f)).
2.4 Model Evaluation and Performance Metrics
Comprehensive model evaluation was conducted using the independent test set through
multiple complementary performance metrics capturing different aspects of predictive
capability. Binary predictions were generated by applying a decision threshold of 0.5 to the
continuous probability outputs, classifying patients with predicted mortality probability
exceeding 0.5 as high-risk and those below this threshold as low-risk. From these classifications,
a confusion matrix was constructed tabulating true positive (TP), true negative (TN), false positive
(FP), and false negative (FN) counts, enabling computation of fundamental performance
indicators.

Classification accuracy, representing the proportion of correct predictions, was calculated as:

A - TP + TN -
Ay = b Y TN + FP + FN

Precision, quantifying the proportion of predicted positive cases that were truly positive, was
computed as:

Recall (sensitivity), measuring the proportion of actual positive cases correctly identified, was
determined as:

Precision — TP )
recision = 5 ———

The F1-score, representing the harmonic mean of precision and recall and providing a balanced
assessment particularly relevant for imbalanced datasets, was calculated as:
2 x Precision x Recall

F, = — 7
1™ Precision + Recall 7
Additionally, specificity, indicating the true negative rate, was computed as:
i TN
Specificity = TNTFP (8)
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Beyond threshold-dependent metrics, we evaluated the area under the receiver operating
characteristic curve (AUC-ROC), which assesses discriminative capacity across all possible
decision thresholds. The ROC curve plots true positive rate against false positive rate at varying
probability thresholds, with the AUC providing a single scalar metric ranging from 0.5 (no
discriminative ability) to 1.0 (perfect discrimination). Model calibration was evaluated through
calibration curves, partitioning the test set into ten probability-based bins and comparing mean
predicted probabilities against observed mortality frequencies within each bin. This analysis
assessed whether predicted probabilities accurately reflected true mortality rates across the risk
spectrum. The Brier score, quantifying the mean squared difference between predicted
probabilities and actual outcomes, provided an additional calibration metric, with lower values
indicating superior calibration.
2.5 Feature Importance and Statistical Analysis
Systematic feature importance analysis was conducted to identify the clinical variables most
strongly associated with mortality risk and assess their statistical significance. For logistic
regression models with standardized predictors, the absolute magnitude of regression
coefficients directly indicates relative feature importance, with larger absolute values
corresponding to stronger associations with the outcome. Features were ranked according to
their absolute coefficient values, and comprehensive statistical testing was performed for each
predictor.
Statistical significance of individual features was assessed through Wald tests, with the test
statistic for each coefficient g; calculated as:
b

7 SE () ©
where SE(ﬁj) represents the estimated standard error of the coefficient. Under the null
hypothesis of no association (8; = 0), this statistic follows an asymptotic standard normal
distribution, enabling p-value computation. To facilitate interpretation of statistical significance
across features, we computed —log,,(p-value) for each coefficient, where values exceeding
1.301 correspond to statistical significance at the conventional a =0.05 level
(since —log1((0.05) = 1.301). This transformation provides an intuitive visualization of statistical
evidence strength, with larger values indicating stronger evidence against the null hypothesis of
no effect.
Risk stratification analysis examined mortality rates across clinically relevant subgroups defined
by key predictor variables. Patients were stratified into age decades and ejection fraction
quintiles, with mortality rates computed within each stratum to characterize risk gradients.
These analyses provide clinical context for the quantitative model coefficients and enable
identification of high-risk patient subpopulations potentially requiring intensified clinical
management. All statistical analyses were conducted using MATLAB R2025a, employing the
Statistics and Machine Learning Toolbox for model fitting and evaluation procedures.
3 Results and Discussion
3.1 Dataset Characteristics and Clinical Profile
The study cohort exhibited demographic and clinical characteristics representative of typical
heart failure populations managed in contemporary clinical practice (Figure 1). The overall
mortality rate of 32.1% observed during the follow-up period aligns with reported short-term
mortality rates in advanced heart failure cohorts, reflecting the substantial disease burden and
prognostic challenges inherent to this patient population. Age distribution analysis revealed a
mean age of 60.3 years across the entire cohort, with mortality cases demonstrating a rightward
shift in age distribution compared to survivors, consistent with well-established associations
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between advanced age and adverse outcomes in cardiovascular disease. The distribution of
ejection fraction, a cardinal indicator of systolic cardiac function, demonstrated considerable
heterogeneity ranging from 14% to 80%, encompassing the spectrum from severely reduced to
preserved ejection fraction phenotypes. Notably, the deceased patient cohort exhibited
markedly lower ejection fraction values with pronounced left-skewing of the distribution,
underscoring the prognostic significance of impaired ventricular systolic function.
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Figure 1. Dataset Overview and Feature Analysis: (a) Target Distribution; (b) Age
Distribution; (c) Ejection Fraction; (d) Feature Correlation; (e) Binary Features; (f) Time vs
Serum Creatinine.

Correlation analysis among key continuous predictors revealed generally weak to moderate
inter-feature correlations (Figure 1d), with the strongest association observed between age and
follow-up time (r = -0.22), suggesting that older patients tended to experience outcomes earlier
during the observation period. The relatively modest correlations between predictor variables
indicate limited multicollinearity concerns, thereby supporting the stability and interpretability
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of subsequently derived regression coefficients. Examination of binary clinical features including
anemia, diabetes, hypertension, sex, and smoking status revealed similar prevalence rates
between survived and deceased cohorts, with differences generally not reaching statistical
significance. This pattern suggests that while these comorbid conditions may contribute to
overall cardiovascular risk, their individual discriminative capacity for short-term mortality
prediction may be limited compared to quantitative biomarkers and functional cardiac
parameters. The relationship between follow-up time and serum creatinine displayed
considerable scatter in both outcome groups (Figure 1f), reflecting the complex, multifactorial
nature of renal function

deterioration in heart failure, which can result from primary renal disease, cardiorenal syndrome,
or medication effects, among other etiologies.
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Figure 2. Key Clinical Features Analysis: (a) age; (b) ejection fraction; (c) serum creatinine;
(d) serum sodium; (e) creatinine phosphokinase; (f) time.

3.2 Clinical Features and Outcome Associations

Detailed comparative analysis of key clinical features between survived and deceased patient
groups revealed several statistically significant and clinically meaningful differences (Figure 2).
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Age distributions demonstrated clear separation between outcome groups, with deceased
patients exhibiting significantly elevated median age (65.0 versus 60.0 years, p<0.001) and
broader interquartile range, indicating greater age heterogeneity within the mortality cohort.
This finding reinforces age as a fundamental risk factor in heart failure prognosis, likely reflecting
cumulative physiological decline, increased comorbidity burden, and diminished physiological
reserve capacity with advancing years. Ejection fraction comparisons revealed particularly
striking differences, with deceased patients demonstrating substantially lower median values
(30.0% versus 38.0%, p<0.001) and pronounced left-skewing of the distribution toward severely
reduced ejection fraction ranges. These findings underscore the central prognostic importance
of ventricular systolic dysfunction, which fundamentally impairs cardiac output, precipitates
neurohormonal activation, and initiates maladaptive remodeling cascades that perpetuate
disease progression.

Serum creatinine concentrations, serving as a proxy for renal function status, exhibited marked
elevation in deceased patients (median 1.30 versus 1.00 mg/dL, p<0.001), with substantially
greater variability as evidenced by expanded interquartile ranges and numerous outliers in the
mortality group. This pattern reflects the well-established prognostic significance of renal
dysfunction in heart failure, where cardiorenal interaction mechanisms including reduced renal
perfusion, venous congestion, and neurohormonal activation contribute to progressive renal
impairment. The presence of renal dysfunction not only serves as a marker of disease severity
but also complicates therapeutic management by limiting options for pharmacological
intervention and increasing susceptibility to medication-related adverse effects. Serum sodium
levels demonstrated statistically significant but clinically modest differences between groups
(median 135.5 versus 137.0 mEqg/L, p<0.001), with deceased patients exhibiting lower values
consistent with dilutional hyponatremia arising from neurohormonal activation and water
retention in advanced heart failure states.

Creatinine phosphokinase levels, reflecting myocardial injury or skeletal muscle breakdown,
showed no significant differences between outcome groups (p=0.280), suggesting limited
independent prognostic value for this biomarker in the present cohort. This finding contrasts
with some previous investigations but may reflect the heterogeneous etiology of creatinine
phosphokinase elevation and its variable relationship with acute versus chronic cardiac
pathology. Follow-up time emerged as the clinical variable demonstrating the most pronounced
difference between outcome groups (median 44.5 versus 172.0 days, p<0.001), with deceased
patients experiencing substantially shortened survival duration. This observation underscores
the distinction between early mortality risk, captured by this cohort, and longer-term prognosis,
emphasizing the model's relevance for identifying patients at imminent risk requiring urgent
clinical intervention. The large effect size for this variable (Cohen's d = -1.324) reflects its
particularly strong discriminative capacity and motivates its prominent role in subsequent
predictive modeling.

3.3 Predictive Model Performance and Discrimination

The developed logistic regression model demonstrated robust predictive performance across
multiple evaluation metrics on the independent test set (Figure 3). The confusion matrix analysis
revealed 55 true negative predictions (correctly identified survivors), 17 true positive predictions
(correctly identified mortality events), 7 false positive predictions (survivors incorrectly classified
as mortality risk), and 11 false negative predictions (mortality events incorrectly classified as low
risk). This distribution yielded an overall classification accuracy of 80.0%, indicating correct
prediction in four out of five cases. Precision, measuring positive predictive value, achieved
70.8%, suggesting that approximately seven of ten patients classified as high-risk indeed
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experienced mortality events. Recall, quantifying sensitivity for detecting true mortality cases,
reached 60.7%, indicating that the model successfully identified approximately three-fifths of
actual mortality events. The F1-score of 65.4% provided a balanced assessment accounting for
both precision and recall, while specificity of 88.7% demonstrated particularly strong

performance in correctly identifying survivors, minimizing false alarm rates.
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Figure 3. Model Performance Analysis: (a) Confusion Matrix; (b) ROC Curv; (c) Performance
Metrics; (d) Prediction Distribution.

The receiver operating characteristic curve analysis yielded an area under the curve of 0.872,
substantially exceeding the null performance benchmark of 0.5 and approaching the threshold
typically considered indicative of excellent discrimination (AUC > 0.9). This performance level
demonstrates that the model possesses strong capacity to rank-order patients according to
mortality risk, such that a randomly selected patient who experienced mortality would receive a
higher risk score than a randomly selected survivor in approximately 87% of comparisons. The
ROC curve trajectory revealed favorable trade-offs between sensitivity and specificity across the
probability threshold spectrum, with the curve exhibiting pronounced left-upper deviation from
the diagonal reference line characteristic of discriminative models. Operating point analysis
identified an optimal decision threshold of approximately 0.38 based on Youden's index
maximization, balancing sensitivity and specificity considerations. However, the ultimate choice
of operating threshold should be guided by clinical context, with scenarios emphasizing early
detection potentially favoring lower thresholds accepting increased false positive rates, while
resource-limited settings may prioritize higher thresholds minimizing unnecessary interventions.
Analysis of predicted probability distributions between outcome groups (Figure 3d) revealed
substantial butincomplete separation, with deceased patients demonstrating markedly elevated
mean predicted probabilities (0.614 versus 0.185 in survivors). The considerable overlap in the
intermediate probability range reflects inherent outcome uncertainty arising from measurement
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noise, unmeasured confounding variables, and stochastic biological variation. Nonetheless, the
model achieved meaningful risk stratification, with the majority of survivors (88.7%) receiving
predicted probabilities below the 0.5 decision threshold and a substantial proportion of mortality
cases (60.7%) exceeding this threshold. Performance comparison between training and test sets
revealed minimal degradation (training accuracy 83.7% versus test accuracy 80.0%), indicating
excellent generalization capacity without evidence of substantial overfitting. This finding
validates the regularization properties inherent to maximum likelihood estimation with modest
sample sizes and suggests that the model has captured genuine prognostic relationships rather
than idiosyncratic patterns specific to the training data.

3.4 Feature Importance and Clinical Interpretability

Systematic feature importance analysis identified follow-up time, ejection fraction, age, and
serum creatinine as the four most influential predictors of mortality risk based on absolute
regression coefficient magnitudes (Figures 4 and 5). Follow-up time emerged as the dominant
predictor with a coefficient of -1.622 (p<0.001), indicating that each standard deviation increase
in follow-up duration (approximately 67 days) was associated with an 80% reduction in mortality
odds (exp (—1.622) = 0.197), holding other variables constant. The negative coefficient reflects
the fundamental observation that patients who survived longer in the study necessarily
accumulated greater follow-up time, creating a strong inverse association with the mortality
outcome. While this variable's dominant influence partly reflects mathematical coupling
between follow-up duration and outcome timing, it nonetheless provides valuable prognostic
information, as patients demonstrating clinical stability sufficient to sustain extended follow-up
inherently manifest lower short-term mortality risk.

Ejection fraction exhibited the second-largest coefficient magnitude (-1.159, p<0.001),
demonstrating that each standard deviation increase in left ventricular ejection fraction
(approximately 11 percentage points) was associated with a 69% reduction in mortality odds.
This finding strongly reinforces clinical paradigms emphasizing systolic dysfunction severity as a
cardinal prognostic determinant in heart failure. The magnitude of this association underscores
the physiological centrality of cardiac pump function in determining outcomes, with preserved
ejection fraction enabling adequate end-organ perfusion, limiting neurohormonal activation,
and providing physiological reserve capacity. The highly significant p-value (p<0.001) indicates
robust statistical evidence for this association, consistent with decades of clinical research
establishing ejection fraction as a cornerstone of heart failure risk stratification schemes.

(a) Feature Coefficients (b) Statistical Significance
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Figure 4. Feature Importance and Statistical Analysis: (a) Feature Coefficients; (b)
Statistical Significance.
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Age demonstrated the third-strongest association with mortality risk, exhibiting a positive
coefficient of +0.541 (p=0.018), indicating that each standard deviation increase in age
(approximately 12 years) was associated with a 72% increase in mortality odds. This relationship
aligns with established epidemiological patterns wherein cardiovascular mortality risk escalates
with advancing age, reflecting accumulated subclinical atherosclerosis, diminished physiological
reserve, increased comorbidity burden, and reduced tolerance for therapeutic interventions. The
statistical significance at the 0.05 level, while somewhat weaker than the preceding variables,
nonetheless provides reasonable evidence for age-related risk gradients warranting
consideration in clinical risk assessment. Serum creatinine demonstrated a positive coefficient
of +0.429 (p=0.062), approaching but not achieving conventional statistical significance,
suggesting that renal dysfunction may contribute to mortality risk though the evidence strength
in this particular cohort remained somewhat equivocal. The trend toward significance combined
with substantial coefficient magnitude nonetheless suggests clinical relevance, particularly given
extensive literature documenting cardiorenal syndrome as a critical prognostic factor.
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Figure 5. Top 4 Most Important Features Distribution: (a) time; (b) ejection fraction; (c) age;
(d) serum creatinine.

Examination of the four most influential features' distributions between outcome groups (Figure
5) provided visual confirmation of their discriminative capacity. Follow-up time distributions
demonstrated marked separation with minimal overlap, deceased patients exhibiting
pronounced concentration in early time periods reflecting abbreviated survival. Ejection fraction
distributions revealed clear left-shifting in the mortality cohort, with substantial concentration
below 40% consistent with guidelines defining reduced ejection fraction heart failure. Age
distributions showed moderate rightward shifting in deceased patients, though considerable
overlap reflected age-independent risk heterogeneity. Serum creatinine distributions
demonstrated right-skewing in both groups but with markedly elevated values and extended
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tails in the mortality cohort, indicating renal dysfunction concentration among high-risk patients.
These distributional patterns provide intuitive visual confirmation of the quantitative coefficient
estimates and facilitate clinical interpretation of model predictions.

3.5 Risk Stratification and Model Calibration

Risk stratification analysis across age strata revealed monotonically increasing mortality rates
with advancing age (Figure 6a), progressing from 23% in patients aged 40-49 years to 83% in
those aged 90-99 years. This gradient demonstrates approximately 3.6-fold mortality rate
amplification across the age spectrum, quantifying the substantial prognostic impact of age-
related physiological decline. The steep acceleration in mortality risk above 80 years suggests
particular vulnerability in octogenarian and nonagenarian populations, warranting heightened
clinical vigilance and potentially influencing therapeutic decision-making regarding invasive
interventions. Ejection fraction stratification (Figure 6b) revealed a generally inverse relationship
between ventricular systolic function and mortality risk, with the highest mortality rates
observed in patients with severely reduced ejection fraction below 30% (approximately 63%
mortality) compared to 16-29% mortality in patients with ejection fraction exceeding 40%. This
pattern reinforces ejection fraction's role as a pivotal determinant of prognosis and supports
guideline recommendations for intensified medical therapy and device consideration in reduced
ejection fraction phenotypes.
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Figure 6. Risk Stratification and Calibration: (a) Mortality Rate by Age; (b) Mortality Rate
by EF; (c) Age vs EF with Predicted Risk; (d) Calibration Curve.

Scatter plot analysis integrating age, ejection fraction, and predicted mortality risk (Figure 6c)
revealed several notable patterns in the multivariate risk landscape. High-risk predictions (red
coloration) concentrated in the upper-left quadrant corresponding to advanced age combined

o
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with severely reduced ejection fraction, reflecting synergistic risk amplification when multiple
adverse factors coincide. Conversely, low-risk predictions (blue coloration) predominated in
younger patients with preserved or mildly reduced ejection fraction. The intermediate risk zone
demonstrated considerable heterogeneity, underscoring the multifactorial nature of heart
failure prognosis and the value of integrating multiple clinical parameters within a unified
predictive framework. Notably, even among younger patients with preserved ejection fraction,
occasional high-risk predictions emerged, likely reflecting adverse profiles on other unmeasured
or less influential variables, emphasizing the limitations of two-dimensional visualization for
capturing high-dimensional risk patterns.

Calibration analysis (Figure 6d) demonstrated generally favorable agreement between predicted
probabilities and observed mortality frequencies across the risk spectrum, with the calibration
curve tracking reasonably close to the diagonal line of perfect calibration. The Hosmer-
Lemeshow test yielded a non-significant result (x2 = 7.32, p = 0.502), failing to reject the null
hypothesis of good calibration and providing formal statistical support for model calibration
adequacy. The Brier score of 0.131 indicated reasonably low mean squared prediction error,
comparing favorably with benchmark values for binary outcome prediction. Some deviation
from perfect calibration was observed in the highest risk decile, where predicted probabilities
slightly underestimated actual mortality rates, suggesting possible residual uncertainty in
identifying the very highest-risk patients. This pattern may reflect sample size limitations in
extreme risk strata or unmodeled non-linear effects in tail regions. Nonetheless, the overall
calibration profile supports the model's utility for generating clinically meaningful probability
estimates that appropriately reflect true mortality risk magnitudes rather than merely providing
rank-ordering.

3.6 Clinical Implications and Model Utility

The developed predictive model offers several potential clinical applications within heart failure
care pathways. First, the probabilistic risk outputs enable objective, quantitative risk stratification
supporting clinical decision-making regarding intensity of monitoring, timing of specialty referral,
and consideration of advanced therapeutic options including mechanical circulatory support or
cardiac transplantation evaluation. Patients identified as high-risk through model predictions
may warrant more frequent clinical encounters, proactive adjustment of pharmacological
therapy, and earlier engagement of palliative care services for comprehensive symptom
management and goals-of-care discussions. Second, the model's interpretability through
clinically familiar variables (age, ejection fraction, renal function) facilitates integration into
existing clinical workflows and supports transparent communication with patients regarding
their prognosis. The ability to explain predictions based on readily available clinical data
enhances clinician trust and patient understanding compared to black-box algorithmic
approaches.

Third, the risk prediction framework could potentially inform clinical trial enrollment strategies
by identifying high-risk patients most likely to experience events during study follow-up, thereby
improving statistical power and accelerating therapeutic development timelines. The model's
strong discriminative performance suggests utility for enrichment strategies in cardiovascular
outcomes trials. Fourth, the identified feature importance hierarchy provides evidence-based
guidance for clinical monitoring priorities, emphasizing the particular prognostic value of serial
ejection fraction assessment, renal function surveillance, and consideration of age-related risk
amplification. These findings could inform quality improvement initiatives and clinical practice
guideline development.

However, several important limitations warrant consideration. First, the relatively modest
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sample size of 299 patients, while sufficient for initial model development and validation, limits
the precision of effect size estimates and may inadequately represent rare patient phenotypes
or uncommon clinical scenarios. External validation in larger, independent cohorts from diverse
geographic regions and healthcare systems represents a critical next step before widespread
clinical deployment. Second, the dataset's binary outcome variable (mortality versus survival)
does not capture important distinctions between cardiovascular and non-cardiovascular
mortality, potentially diluting signals for heart failure-specific prognostic factors. Future
investigations incorporating cause-specific mortality outcomes could refine predictive accuracy
for specific clinical contexts. Third, the cross-sectional nature of predictor measurement does
not account for temporal evolution of clinical status, serial biomarker trajectories, or therapeutic
intervention effects during follow-up. Longitudinal modeling approaches incorporating time-
varying covariates may enhance predictive performance and better reflect dynamic clinical
reality.

Fourth, the absence of several established prognostic biomarkers including natriuretic peptides
(BNP, NT-proBNP), troponin, galectin-3, and soluble ST2 represents a notable limitation, as these
markers have demonstrated incremental prognostic value in previous investigations.
Incorporation of these biomarkers in expanded models may further improve risk prediction
accuracy. Fifth, the logistic regression framework, while clinically interpretable, may not capture
complex non-linear relationships and higher-order interactions that more flexible machine
learning algorithms might exploit. Comparative analysis against gradient boosting machines,
random forests, or neural network architectures could assess whether modest interpretability
sacrifices yield meaningful performance gains. Sixth, the model was developed and tested within
a single dataset without examination of performance variation across patient subgroups defined
by age categories, sex, heart failure etiology, or ejection fraction phenotype. Subgroup-specific
calibration and discrimination assessment would strengthen confidence in broad applicability.
3.7 Methodological Considerations and Future Directions

The statistical rigor of the present investigation provides confidence in the validity of reported
findings, with appropriate train-test splitting preventing overfitting, z-score normalization
ensuring fair coefficient comparison, and maximum likelihood estimation providing efficient,
asymptotically unbiased parameter estimates under the assumed logistic model. The
comprehensive evaluation framework encompassing discrimination metrics, calibration
assessment, and clinical interpretability analysis offers a balanced perspective on model utility
extending beyond simple accuracy reporting. The identification of statistically significant
predictors through formal hypothesis testing provides evidence-weighted guidance regarding
which clinical variables most reliably contribute to prognostic assessment.

Future research directions could address the identified limitations through several
complementary approaches. First, prospective external validation in independent patient
cohorts would establish generalizability and identify potential recalibration needs for different
populations. Second, extension to time-to-event modeling through Cox proportional hazards
regression or parametric survival models would enable censoring accommodation and time-
dependent risk estimation. Third, incorporation of imaging-derived parameters including left
atrial volume, right ventricular function, and advanced echocardiographic strain indices might
capture additional prognostic information not reflected in conventional ejection fraction. Fourth,
integration of emerging biomarkers, genetic risk scores, and multi-omics data platforms could
unveil novel biological pathways contributing to heart failure progression.

Fifth, development of dynamic risk prediction models updating prognostically as new clinical
data accumulate during longitudinal follow-up would better reflect real-world clinical scenarios
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where risk reassessment occurs repeatedly. Sixth, investigation of risk prediction model impact
on clinical decision-making and patient outcomes through randomized implementation trials
would provide definitive evidence regarding clinical utility. Such trials could examine whether
model-guided therapy intensification or monitoring strategies improve survival, quality of life, or
healthcare resource utilization compared to standard care. Seventh, incorporation of patient-
reported outcomes, functional status assessments, and quality of life measures would provide a
more holistic perspective on prognosis extending beyond mortality to encompass the full
spectrum of patient-centered outcomes. Finally, examination of algorithmic fairness across
demographic subgroups and socioeconomic strata would ensure equitable performance and
identify potential disparities requiring targeted mitigation strategies.

4 Conclusion

This investigation developed and validated an interpretable logistic regression-based predictive
model for mortality risk assessment in heart failure patients, achieving strong discriminative
performance (AUC 0.872) and favorable calibration characteristics. Through systematic feature
importance analysis, we identified follow-up time, ejection fraction, age, and serum creatinine as
the most influential prognostic determinants, with the model successfully stratifying patients
into clinically meaningful risk categories. The transparent, clinically interpretable nature of the
modeling framework facilitates integration into existing care pathways and supports evidence-
based risk communication with patients. While acknowledging important limitations including
modest sample size, absence of external validation, and restriction to baseline clinical data, the
findings demonstrate the feasibility and potential clinical utility of data-driven risk prediction in
heart failure management. Future work should focus on external validation in diverse
populations, incorporation of additional biomarkers and imaging parameters, extension to
longitudinal risk modeling, and rigorous evaluation of clinical implementation strategies through
randomized controlled trials. Ultimately, integration of such predictive tools within
comprehensive heart failure care programs holds promise for enabling personalized medicine
approaches that optimize therapeutic strategies according to individual patient risk profiles,
potentially improving outcomes through early identification and intensive management of high-
risk populations while avoiding unnecessary intervention in low-risk patients.
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