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Abstract 

Heart failure represents a significant global health challenge with substantial mortality rates. This 

study develops and validates a logistic regression-based predictive model for mortality risk 

assessment in heart failure patients using comprehensive clinical records. Analyzing data from 

299 patients across 12 clinical features, we achieved a model performance with an area under 

the receiver operating characteristic curve (AUC-ROC) of 0.872 and accuracy of 80.0%. Our 

analysis identified follow-up time (coefficient: -1.622, p<0.001), ejection fraction (coefficient: -

1.159, p<0.001), age (coefficient: +0.541, p=0.018), and serum creatinine (coefficient: +0.429, 

p=0.062) as the most influential predictors of mortality. The model demonstrates robust 

calibration characteristics and provides clinically actionable risk stratification, suggesting its 

potential utility in supporting clinical decision-making for heart failure patient management and 

personalized treatment planning. 
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1 Introduction 

Heart failure constitutes a major cardiovascular syndrome characterized by the heart's 

diminished capacity to adequately pump blood throughout the circulatory system, affecting 

approximately 64.3 million individuals worldwide with prevalence rates continuing to rise in 

aging populations (Khandelwal & Gupta, 2023). Despite advances in therapeutic interventions 

and management strategies, heart failure remains associated with substantial morbidity and 

mortality, with five-year survival rates comparable to many malignant neoplasms (Stewart et al., 

2001). The heterogeneous nature of heart failure progression and the complex interplay of 

multiple clinical, biochemical, and physiological factors create significant challenges in accurately 

predicting patient outcomes and optimizing treatment strategies (Lourida & Louridas, 2022). 

Consequently, there exists a compelling clinical need for robust, data-driven predictive models 

capable of identifying high-risk patients who may benefit from more intensive monitoring and 

therapeutic interventions (Lyu, 2025). 

Traditional risk stratification approaches in heart failure have relied heavily on clinical judgment 

and established scoring systems such as the Seattle Heart Failure Model and the MAGGIC risk 

score (Siddiqi et al., 2022). However, these conventional methods often exhibit limitations in 

capturing the multifaceted relationships between diverse clinical variables and patient outcomes. 

The advent of machine learning techniques has opened new avenues for developing more 

sophisticated predictive models that can uncover complex, non-linear patterns within clinical 

data (Ahmed et al., 2020). Among various algorithmic approaches, logistic regression maintains 

particular relevance in clinical applications due to its inherent interpretability, probabilistic 

output, and well-established statistical framework, enabling clinicians to understand not only 

prediction outcomes but also the relative contribution of individual risk factors (Cuzzocrea et al., 
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2025). 

Recent investigations have demonstrated the feasibility of applying machine learning 

methodologies to heart failure datasets, with studies utilizing various algorithms including 

support vector machines, random forests, and neural networks (Rimal et al., 2025). However, 

many such approaches sacrifice interpretability for marginal gains in predictive performance, 

potentially limiting their clinical utility where understanding the mechanistic basis of predictions 

remains paramount (Ng et al., 2023). Furthermore, comprehensive investigations systematically 

examining the relative importance and statistical significance of multiple clinical biomarkers 

within a unified predictive framework remain relatively sparse in the literature (Al-Tashi et al., 

2023). This gap underscores the necessity for transparent, clinically interpretable models that 

can simultaneously achieve robust predictive performance while elucidating the specific 

contributions of individual risk factors. 

The present investigation addresses these considerations by developing and rigorously 

validating a logistic regression-based predictive model for mortality risk in heart failure patients. 

Our approach leverages a comprehensive clinical dataset encompassing demographic 

characteristics, laboratory biomarkers, and comorbidity profiles to construct a transparent, 

interpretable prediction framework. We systematically evaluate model performance across 

multiple metrics, conduct detailed feature importance analysis with statistical significance 

testing, and examine model calibration characteristics to ensure reliability across different risk 

strata. Through this multifaceted analytical approach, we aim to provide clinically actionable 

insights that can inform patient risk stratification, guide therapeutic decision-making, and 

ultimately contribute to improved outcomes in heart failure management. The methodology 

emphasizes not only predictive accuracy but also clinical interpretability and practical 

applicability, thereby bridging the gap between advanced analytical techniques and bedside 

clinical practice. 

 

2 Methods 

2.1 Dataset and Study Population 

The analytical framework employed a comprehensive clinical dataset comprising 299 patients 

diagnosed with heart failure, with follow-up periods extending up to 285 days. The dataset 

encompassed 12 distinct clinical and laboratory variables systematically collected during routine 

clinical assessment and monitoring. Specifically, demographic parameters included patient age 

(measured in years) and biological sex (binary encoding), while clinical characteristics comprised 

ejection fraction (expressed as percentage of blood volume expelled per cardiac contraction), 

systolic blood pressure categorization, and binary indicators for comorbid conditions including 

anemia, diabetes mellitus, and active smoking status. Laboratory biomarkers incorporated 

serum creatinine concentration (mg/dL), reflecting renal function; serum sodium levels (mEq/L), 

indicating electrolyte homeostasis; creatinine phosphokinase activity (mcg/L), associated with 

cardiac muscle damage; and platelet count (kiloplatelets/mL). The temporal dimension was 

captured through the follow-up time variable (measured in days), representing the duration 

between initial clinical assessment and either mortality event or study conclusion. The primary 

outcome variable constituted a binary indicator of mortality status, with 96 patients (32.1%) 

experiencing death events during the observation period and 203 patients (67.9%) surviving until 

study termination or loss to follow-up. 

Prior to model development, comprehensive exploratory data analysis was conducted to 

examine distributional properties, identify potential outliers, and assess relationships between 

predictor variables and the mortality outcome. Statistical comparisons between survived and 
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deceased patient cohorts revealed significant differences across multiple clinical parameters. 

Specifically, patients who experienced mortality events demonstrated significantly elevated 

mean age (65.2 ± 13.2 years versus 58.8 ± 10.6 years in survivors, p<0.001), substantially reduced 

ejection fraction (33.5 ± 12.5% versus 40.3 ± 10.9% in survivors, p<0.001), markedly elevated 

serum creatinine concentrations (1.84 ± 1.47 mg/dL versus 1.18 ± 0.65 mg/dL in survivors, 

p<0.001), and considerably shortened follow-up duration (70.9 ± 62.4 days versus 158.3 ± 67.7 

days in survivors, p<0.001), indicating earlier mortality in this cohort. These preliminary findings 

provided initial evidence for the discriminative capacity of these clinical variables and informed 

subsequent model development strategies. 

2.2 Data Preprocessing and Standardization 

To ensure optimal model performance and numerical stability during parameter estimation, 

rigorous data preprocessing protocols were implemented. The complete dataset underwent 

random permutation to eliminate potential ordering effects, followed by stratified partitioning 

into training and testing subsets using a 70:30 allocation ratio. This resulted in a training cohort 

of 209 patients (68 mortality events, 141 survivors) utilized for model parameter estimation, and 

an independent test cohort of 90 patients (28 mortality events, 62 survivors) reserved exclusively 

for unbiased performance evaluation. The specific train-test split ratio was selected to balance 

the competing objectives of providing sufficient data for robust parameter estimation while 

maintaining an adequately sized holdout set for reliable performance assessment. To maintain 

experimental reproducibility, a fixed random seed (seed=42) was employed for the random 

partitioning procedure. 

Feature standardization was accomplished through z-score normalization, transforming each 

predictor variable to zero mean and unit variance based on training set statistics. Mathematically, 

for each feature 𝑥𝑖 in the training set, the normalized value 𝑧𝑖 was computed as: 

𝑧𝑖 =
𝑥𝑖 − 𝜇

𝜎
(1) 

where 𝜇  represents the feature mean and 𝜎  denotes the standard deviation calculated 

exclusively from training data. Critically, the identical transformation parameters (𝜇  and 𝜎 ) 

derived from the training set were subsequently applied to normalize the test set, thereby 

preventing information leakage and ensuring the test set remained truly independent. This 

standardization procedure serves multiple methodological purposes: it eliminates scale-

dependent effects that could disproportionately influence parameter estimates, facilitates direct 

comparison of regression coefficients as indicators of relative feature importance, enhances 

numerical conditioning of the optimization problem, and accelerates convergence during 

iterative parameter estimation procedures. 

2.3 Logistic Regression Model Development 

The predictive modeling framework employed logistic regression, a generalized linear model 

particularly well-suited for binary classification tasks with probabilistic interpretation. The 

fundamental architecture posits that the probability of mortality event occurrence, denoted 

as 𝑃(𝑌 = 1 ∣ 𝑋), follows a logistic transformation of a linear combination of predictor variables. 

Formally, the model is specified as: 

𝑃(𝑌 = 1|𝐗) =
1

1 + exp(−(𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑝𝑥𝑝))
(2) 

where 𝑌  represents the binary mortality outcome, 𝐗 = (𝑥1, 𝑥2, … , 𝑥𝑝)
𝑇  denotes the vector 

of 𝑝  predictor variables (in this investigation, 𝑝 = 12 ), 𝛽0  constitutes the intercept term, 

and 𝛽1, 𝛽2, … , 𝛽𝑝 represent the regression coefficients quantifying the association between each 

predictor and the log-odds of mortality. The logistic function, also termed the sigmoid function, 
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constrains predicted probabilities to the interval [0,1] , ensuring interpretable probabilistic 

outputs regardless of the magnitude of the linear predictor. 

Equivalently, the model can be expressed in terms of the logit transformation, which linearizes 

the relationship between predictors and outcome: 

log (
𝑃(𝑌 = 1|𝐗)

1 − 𝑃(𝑌 = 1|𝐗)
) = 𝛽0 +∑ 

𝑝

𝑗=1

𝛽𝑗𝑥𝑗 (3) 

This formulation reveals that each regression coefficient 𝛽𝑗 represents the change in log-odds 

of mortality associated with a one-unit increase in the corresponding predictor variable, holding 

all other variables constant. For standardized predictors, this corresponds to the change in log-

odds per one standard deviation increase in the original feature scale. 

Parameter estimation was performed using maximum likelihood estimation (MLE), which 

identifies the coefficient values that maximize the probability of observing the actual outcomes 

given the predictor variables. The log-likelihood function for the logistic regression model is: 

ℓ(𝜷) = ∑ 

𝑛

𝑖=1

[𝑦𝑖 log(𝑝𝑖) + (1 − 𝑦𝑖) log(1 − 𝑝𝑖)] (4) 

where 𝑛 represents the number of training observations, 𝑦𝑖 denotes the observed outcome for 

patient 𝑖 , 𝑝𝑖 = 𝑃(𝑌 = 1 ∣ 𝐗𝑖)  represents the predicted probability for patient 𝑖 , and 𝜷 =

(𝛽0, 𝛽1, … , 𝛽𝑝)
𝑇 constitutes the complete parameter vector. The optimization procedure employs 

iteratively reweighted least squares (IRLS) algorithm, which converges to the maximum 

likelihood estimates through sequential quadratic approximations of the log-likelihood surface. 

Statistical inference regarding individual coefficient significance was conducted through Wald 

tests, evaluating the null hypothesis 𝐻0: 𝛽𝑗 = 0 for each predictor, with p-values computed from 

the standard normal distribution of the test statistic 𝑧𝑗 = 𝛽̂𝑗/SE(𝛽̂𝑗). 

2.4 Model Evaluation and Performance Metrics 

Comprehensive model evaluation was conducted using the independent test set through 

multiple complementary performance metrics capturing different aspects of predictive 

capability. Binary predictions were generated by applying a decision threshold of 0.5 to the 

continuous probability outputs, classifying patients with predicted mortality probability 

exceeding 0.5 as high-risk and those below this threshold as low-risk. From these classifications, 

a confusion matrix was constructed tabulating true positive (TP), true negative (TN), false positive 

(FP), and false negative (FN) counts, enabling computation of fundamental performance 

indicators. 

Classification accuracy, representing the proportion of correct predictions, was calculated as: 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(5) 

Precision, quantifying the proportion of predicted positive cases that were truly positive, was 

computed as: 

Recall (sensitivity), measuring the proportion of actual positive cases correctly identified, was 

determined as: 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(6) 

The F1-score, representing the harmonic mean of precision and recall and providing a balanced 

assessment particularly relevant for imbalanced datasets, was calculated as: 

𝐹1 =
2 × Precision × Recall

Precision + Recall
(7) 

Additionally, specificity, indicating the true negative rate, was computed as: 

Specificity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(8) 
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Beyond threshold-dependent metrics, we evaluated the area under the receiver operating 

characteristic curve (AUC-ROC), which assesses discriminative capacity across all possible 

decision thresholds. The ROC curve plots true positive rate against false positive rate at varying 

probability thresholds, with the AUC providing a single scalar metric ranging from 0.5 (no 

discriminative ability) to 1.0 (perfect discrimination). Model calibration was evaluated through 

calibration curves, partitioning the test set into ten probability-based bins and comparing mean 

predicted probabilities against observed mortality frequencies within each bin. This analysis 

assessed whether predicted probabilities accurately reflected true mortality rates across the risk 

spectrum. The Brier score, quantifying the mean squared difference between predicted 

probabilities and actual outcomes, provided an additional calibration metric, with lower values 

indicating superior calibration. 

2.5 Feature Importance and Statistical Analysis 

Systematic feature importance analysis was conducted to identify the clinical variables most 

strongly associated with mortality risk and assess their statistical significance. For logistic 

regression models with standardized predictors, the absolute magnitude of regression 

coefficients directly indicates relative feature importance, with larger absolute values 

corresponding to stronger associations with the outcome. Features were ranked according to 

their absolute coefficient values, and comprehensive statistical testing was performed for each 

predictor. 

Statistical significance of individual features was assessed through Wald tests, with the test 

statistic for each coefficient 𝛽𝑗 calculated as: 

𝑧𝑗 =
𝛽̂𝑗

SE(𝛽̂𝑗)
(9) 

where SE(𝛽̂𝑗)  represents the estimated standard error of the coefficient. Under the null 

hypothesis of no association (𝛽𝑗 = 0 ), this statistic follows an asymptotic standard normal 

distribution, enabling p-value computation. To facilitate interpretation of statistical significance 

across features, we computed −log⁡10(𝑝-value)  for each coefficient, where values exceeding 

1.301 correspond to statistical significance at the conventional 𝛼 = 0.05  level 

(since −log⁡10(0.05) = 1.301). This transformation provides an intuitive visualization of statistical 

evidence strength, with larger values indicating stronger evidence against the null hypothesis of 

no effect. 

Risk stratification analysis examined mortality rates across clinically relevant subgroups defined 

by key predictor variables. Patients were stratified into age decades and ejection fraction 

quintiles, with mortality rates computed within each stratum to characterize risk gradients. 

These analyses provide clinical context for the quantitative model coefficients and enable 

identification of high-risk patient subpopulations potentially requiring intensified clinical 

management. All statistical analyses were conducted using MATLAB R2025a, employing the 

Statistics and Machine Learning Toolbox for model fitting and evaluation procedures. 

3 Results and Discussion 

3.1 Dataset Characteristics and Clinical Profile 

The study cohort exhibited demographic and clinical characteristics representative of typical 

heart failure populations managed in contemporary clinical practice (Figure 1). The overall 

mortality rate of 32.1% observed during the follow-up period aligns with reported short-term 

mortality rates in advanced heart failure cohorts, reflecting the substantial disease burden and 

prognostic challenges inherent to this patient population. Age distribution analysis revealed a 

mean age of 60.3 years across the entire cohort, with mortality cases demonstrating a rightward 

shift in age distribution compared to survivors, consistent with well-established associations 
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between advanced age and adverse outcomes in cardiovascular disease. The distribution of 

ejection fraction, a cardinal indicator of systolic cardiac function, demonstrated considerable 

heterogeneity ranging from 14% to 80%, encompassing the spectrum from severely reduced to 

preserved ejection fraction phenotypes. Notably, the deceased patient cohort exhibited 

markedly lower ejection fraction values with pronounced left-skewing of the distribution, 

underscoring the prognostic significance of impaired ventricular systolic function. 

 
Figure 1. Dataset Overview and Feature Analysis: (a) Target Distribution; (b) Age 

Distribution; (c) Ejection Fraction; (d) Feature Correlation; (e) Binary Features; (f) Time vs 

Serum Creatinine. 

Correlation analysis among key continuous predictors revealed generally weak to moderate 

inter-feature correlations (Figure 1d), with the strongest association observed between age and 

follow-up time (r = -0.22), suggesting that older patients tended to experience outcomes earlier 

during the observation period. The relatively modest correlations between predictor variables 

indicate limited multicollinearity concerns, thereby supporting the stability and interpretability 
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of subsequently derived regression coefficients. Examination of binary clinical features including 

anemia, diabetes, hypertension, sex, and smoking status revealed similar prevalence rates 

between survived and deceased cohorts, with differences generally not reaching statistical 

significance. This pattern suggests that while these comorbid conditions may contribute to 

overall cardiovascular risk, their individual discriminative capacity for short-term mortality 

prediction may be limited compared to quantitative biomarkers and functional cardiac 

parameters. The relationship between follow-up time and serum creatinine displayed 

considerable scatter in both outcome groups (Figure 1f), reflecting the complex, multifactorial 

nature of renal function  

deterioration in heart failure, which can result from primary renal disease, cardiorenal syndrome, 

or medication effects, among other etiologies. 

 
Figure 2. Key Clinical Features Analysis: (a) age; (b) ejection fraction; (c) serum creatinine; 

(d) serum sodium; (e) creatinine phosphokinase; (f) time. 

3.2 Clinical Features and Outcome Associations 

Detailed comparative analysis of key clinical features between survived and deceased patient 

groups revealed several statistically significant and clinically meaningful differences (Figure 2). 
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Age distributions demonstrated clear separation between outcome groups, with deceased 

patients exhibiting significantly elevated median age (65.0 versus 60.0 years, p<0.001) and 

broader interquartile range, indicating greater age heterogeneity within the mortality cohort. 

This finding reinforces age as a fundamental risk factor in heart failure prognosis, likely reflecting 

cumulative physiological decline, increased comorbidity burden, and diminished physiological 

reserve capacity with advancing years. Ejection fraction comparisons revealed particularly 

striking differences, with deceased patients demonstrating substantially lower median values 

(30.0% versus 38.0%, p<0.001) and pronounced left-skewing of the distribution toward severely 

reduced ejection fraction ranges. These findings underscore the central prognostic importance 

of ventricular systolic dysfunction, which fundamentally impairs cardiac output, precipitates 

neurohormonal activation, and initiates maladaptive remodeling cascades that perpetuate 

disease progression. 

Serum creatinine concentrations, serving as a proxy for renal function status, exhibited marked 

elevation in deceased patients (median 1.30 versus 1.00 mg/dL, p<0.001), with substantially 

greater variability as evidenced by expanded interquartile ranges and numerous outliers in the 

mortality group. This pattern reflects the well-established prognostic significance of renal 

dysfunction in heart failure, where cardiorenal interaction mechanisms including reduced renal 

perfusion, venous congestion, and neurohormonal activation contribute to progressive renal 

impairment. The presence of renal dysfunction not only serves as a marker of disease severity 

but also complicates therapeutic management by limiting options for pharmacological 

intervention and increasing susceptibility to medication-related adverse effects. Serum sodium 

levels demonstrated statistically significant but clinically modest differences between groups 

(median 135.5 versus 137.0 mEq/L, p<0.001), with deceased patients exhibiting lower values 

consistent with dilutional hyponatremia arising from neurohormonal activation and water 

retention in advanced heart failure states. 

Creatinine phosphokinase levels, reflecting myocardial injury or skeletal muscle breakdown, 

showed no significant differences between outcome groups (p=0.280), suggesting limited 

independent prognostic value for this biomarker in the present cohort. This finding contrasts 

with some previous investigations but may reflect the heterogeneous etiology of creatinine 

phosphokinase elevation and its variable relationship with acute versus chronic cardiac 

pathology. Follow-up time emerged as the clinical variable demonstrating the most pronounced 

difference between outcome groups (median 44.5 versus 172.0 days, p<0.001), with deceased 

patients experiencing substantially shortened survival duration. This observation underscores 

the distinction between early mortality risk, captured by this cohort, and longer-term prognosis, 

emphasizing the model's relevance for identifying patients at imminent risk requiring urgent 

clinical intervention. The large effect size for this variable (Cohen's d = -1.324) reflects its 

particularly strong discriminative capacity and motivates its prominent role in subsequent 

predictive modeling. 

3.3 Predictive Model Performance and Discrimination 

The developed logistic regression model demonstrated robust predictive performance across 

multiple evaluation metrics on the independent test set (Figure 3). The confusion matrix analysis 

revealed 55 true negative predictions (correctly identified survivors), 17 true positive predictions 

(correctly identified mortality events), 7 false positive predictions (survivors incorrectly classified 

as mortality risk), and 11 false negative predictions (mortality events incorrectly classified as low 

risk). This distribution yielded an overall classification accuracy of 80.0%, indicating correct 

prediction in four out of five cases. Precision, measuring positive predictive value, achieved 

70.8%, suggesting that approximately seven of ten patients classified as high-risk indeed 
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experienced mortality events. Recall, quantifying sensitivity for detecting true mortality cases, 

reached 60.7%, indicating that the model successfully identified approximately three-fifths of 

actual mortality events. The F1-score of 65.4% provided a balanced assessment accounting for 

both precision and recall, while specificity of 88.7% demonstrated particularly strong 

performance in correctly identifying survivors, minimizing false alarm rates. 

 
Figure 3. Model Performance Analysis: (a) Confusion Matrix; (b) ROC Curv; (c) Performance 

Metrics; (d) Prediction Distribution. 

The receiver operating characteristic curve analysis yielded an area under the curve of 0.872, 

substantially exceeding the null performance benchmark of 0.5 and approaching the threshold 

typically considered indicative of excellent discrimination (AUC > 0.9). This performance level 

demonstrates that the model possesses strong capacity to rank-order patients according to 

mortality risk, such that a randomly selected patient who experienced mortality would receive a 

higher risk score than a randomly selected survivor in approximately 87% of comparisons. The 

ROC curve trajectory revealed favorable trade-offs between sensitivity and specificity across the 

probability threshold spectrum, with the curve exhibiting pronounced left-upper deviation from 

the diagonal reference line characteristic of discriminative models. Operating point analysis 

identified an optimal decision threshold of approximately 0.38 based on Youden's index 

maximization, balancing sensitivity and specificity considerations. However, the ultimate choice 

of operating threshold should be guided by clinical context, with scenarios emphasizing early 

detection potentially favoring lower thresholds accepting increased false positive rates, while 

resource-limited settings may prioritize higher thresholds minimizing unnecessary interventions. 

Analysis of predicted probability distributions between outcome groups (Figure 3d) revealed 

substantial but incomplete separation, with deceased patients demonstrating markedly elevated 

mean predicted probabilities (0.614 versus 0.185 in survivors). The considerable overlap in the 

intermediate probability range reflects inherent outcome uncertainty arising from measurement 
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noise, unmeasured confounding variables, and stochastic biological variation. Nonetheless, the 

model achieved meaningful risk stratification, with the majority of survivors (88.7%) receiving 

predicted probabilities below the 0.5 decision threshold and a substantial proportion of mortality 

cases (60.7%) exceeding this threshold. Performance comparison between training and test sets 

revealed minimal degradation (training accuracy 83.7% versus test accuracy 80.0%), indicating 

excellent generalization capacity without evidence of substantial overfitting. This finding 

validates the regularization properties inherent to maximum likelihood estimation with modest 

sample sizes and suggests that the model has captured genuine prognostic relationships rather 

than idiosyncratic patterns specific to the training data. 

3.4 Feature Importance and Clinical Interpretability 

Systematic feature importance analysis identified follow-up time, ejection fraction, age, and 

serum creatinine as the four most influential predictors of mortality risk based on absolute 

regression coefficient magnitudes (Figures 4 and 5). Follow-up time emerged as the dominant 

predictor with a coefficient of -1.622 (p<0.001), indicating that each standard deviation increase 

in follow-up duration (approximately 67 days) was associated with an 80% reduction in mortality 

odds (exp⁡(−1.622) = 0.197), holding other variables constant. The negative coefficient reflects 

the fundamental observation that patients who survived longer in the study necessarily 

accumulated greater follow-up time, creating a strong inverse association with the mortality 

outcome. While this variable's dominant influence partly reflects mathematical coupling 

between follow-up duration and outcome timing, it nonetheless provides valuable prognostic 

information, as patients demonstrating clinical stability sufficient to sustain extended follow-up 

inherently manifest lower short-term mortality risk. 

Ejection fraction exhibited the second-largest coefficient magnitude (-1.159, p<0.001), 

demonstrating that each standard deviation increase in left ventricular ejection fraction 

(approximately 11 percentage points) was associated with a 69% reduction in mortality odds. 

This finding strongly reinforces clinical paradigms emphasizing systolic dysfunction severity as a 

cardinal prognostic determinant in heart failure. The magnitude of this association underscores 

the physiological centrality of cardiac pump function in determining outcomes, with preserved 

ejection fraction enabling adequate end-organ perfusion, limiting neurohormonal activation, 

and providing physiological reserve capacity. The highly significant p-value (p<0.001) indicates 

robust statistical evidence for this association, consistent with decades of clinical research 

establishing ejection fraction as a cornerstone of heart failure risk stratification schemes. 

 
Figure 4. Feature Importance and Statistical Analysis: (a) Feature Coefficients; (b) 

Statistical Significance. 
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Age demonstrated the third-strongest association with mortality risk, exhibiting a positive 

coefficient of +0.541 (p=0.018), indicating that each standard deviation increase in age 

(approximately 12 years) was associated with a 72% increase in mortality odds. This relationship 

aligns with established epidemiological patterns wherein cardiovascular mortality risk escalates 

with advancing age, reflecting accumulated subclinical atherosclerosis, diminished physiological 

reserve, increased comorbidity burden, and reduced tolerance for therapeutic interventions. The 

statistical significance at the 0.05 level, while somewhat weaker than the preceding variables, 

nonetheless provides reasonable evidence for age-related risk gradients warranting 

consideration in clinical risk assessment. Serum creatinine demonstrated a positive coefficient 

of +0.429 (p=0.062), approaching but not achieving conventional statistical significance, 

suggesting that renal dysfunction may contribute to mortality risk though the evidence strength 

in this particular cohort remained somewhat equivocal. The trend toward significance combined 

with substantial coefficient magnitude nonetheless suggests clinical relevance, particularly given 

extensive literature documenting cardiorenal syndrome as a critical prognostic factor. 

 

Figure 5. Top 4 Most Important Features Distribution: (a) time; (b) ejection fraction; (c) age; 

(d) serum creatinine. 

Examination of the four most influential features' distributions between outcome groups (Figure 

5) provided visual confirmation of their discriminative capacity. Follow-up time distributions 

demonstrated marked separation with minimal overlap, deceased patients exhibiting 

pronounced concentration in early time periods reflecting abbreviated survival. Ejection fraction 

distributions revealed clear left-shifting in the mortality cohort, with substantial concentration 

below 40% consistent with guidelines defining reduced ejection fraction heart failure. Age 

distributions showed moderate rightward shifting in deceased patients, though considerable 

overlap reflected age-independent risk heterogeneity. Serum creatinine distributions 

demonstrated right-skewing in both groups but with markedly elevated values and extended 
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tails in the mortality cohort, indicating renal dysfunction concentration among high-risk patients. 

These distributional patterns provide intuitive visual confirmation of the quantitative coefficient 

estimates and facilitate clinical interpretation of model predictions. 

3.5 Risk Stratification and Model Calibration 

Risk stratification analysis across age strata revealed monotonically increasing mortality rates 

with advancing age (Figure 6a), progressing from 23% in patients aged 40-49 years to 83% in 

those aged 90-99 years. This gradient demonstrates approximately 3.6-fold mortality rate 

amplification across the age spectrum, quantifying the substantial prognostic impact of age-

related physiological decline. The steep acceleration in mortality risk above 80 years suggests 

particular vulnerability in octogenarian and nonagenarian populations, warranting heightened 

clinical vigilance and potentially influencing therapeutic decision-making regarding invasive 

interventions. Ejection fraction stratification (Figure 6b) revealed a generally inverse relationship 

between ventricular systolic function and mortality risk, with the highest mortality rates 

observed in patients with severely reduced ejection fraction below 30% (approximately 63% 

mortality) compared to 16-29% mortality in patients with ejection fraction exceeding 40%. This 

pattern reinforces ejection fraction's role as a pivotal determinant of prognosis and supports 

guideline recommendations for intensified medical therapy and device consideration in reduced 

ejection fraction phenotypes. 

 
Figure 6. Risk Stratification and Calibration: (a) Mortality Rate by Age; (b) Mortality Rate 

by EF; (c) Age vs EF with Predicted Risk; (d) Calibration Curve. 

Scatter plot analysis integrating age, ejection fraction, and predicted mortality risk (Figure 6c) 

revealed several notable patterns in the multivariate risk landscape. High-risk predictions (red 

coloration) concentrated in the upper-left quadrant corresponding to advanced age combined 
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with severely reduced ejection fraction, reflecting synergistic risk amplification when multiple 

adverse factors coincide. Conversely, low-risk predictions (blue coloration) predominated in 

younger patients with preserved or mildly reduced ejection fraction. The intermediate risk zone 

demonstrated considerable heterogeneity, underscoring the multifactorial nature of heart 

failure prognosis and the value of integrating multiple clinical parameters within a unified 

predictive framework. Notably, even among younger patients with preserved ejection fraction, 

occasional high-risk predictions emerged, likely reflecting adverse profiles on other unmeasured 

or less influential variables, emphasizing the limitations of two-dimensional visualization for 

capturing high-dimensional risk patterns. 

Calibration analysis (Figure 6d) demonstrated generally favorable agreement between predicted 

probabilities and observed mortality frequencies across the risk spectrum, with the calibration 

curve tracking reasonably close to the diagonal line of perfect calibration. The Hosmer-

Lemeshow test yielded a non-significant result (χ² = 7.32, p = 0.502), failing to reject the null 

hypothesis of good calibration and providing formal statistical support for model calibration 

adequacy. The Brier score of 0.131 indicated reasonably low mean squared prediction error, 

comparing favorably with benchmark values for binary outcome prediction. Some deviation 

from perfect calibration was observed in the highest risk decile, where predicted probabilities 

slightly underestimated actual mortality rates, suggesting possible residual uncertainty in 

identifying the very highest-risk patients. This pattern may reflect sample size limitations in 

extreme risk strata or unmodeled non-linear effects in tail regions. Nonetheless, the overall 

calibration profile supports the model's utility for generating clinically meaningful probability 

estimates that appropriately reflect true mortality risk magnitudes rather than merely providing 

rank-ordering. 

3.6 Clinical Implications and Model Utility 

The developed predictive model offers several potential clinical applications within heart failure 

care pathways. First, the probabilistic risk outputs enable objective, quantitative risk stratification 

supporting clinical decision-making regarding intensity of monitoring, timing of specialty referral, 

and consideration of advanced therapeutic options including mechanical circulatory support or 

cardiac transplantation evaluation. Patients identified as high-risk through model predictions 

may warrant more frequent clinical encounters, proactive adjustment of pharmacological 

therapy, and earlier engagement of palliative care services for comprehensive symptom 

management and goals-of-care discussions. Second, the model's interpretability through 

clinically familiar variables (age, ejection fraction, renal function) facilitates integration into 

existing clinical workflows and supports transparent communication with patients regarding 

their prognosis. The ability to explain predictions based on readily available clinical data 

enhances clinician trust and patient understanding compared to black-box algorithmic 

approaches. 

Third, the risk prediction framework could potentially inform clinical trial enrollment strategies 

by identifying high-risk patients most likely to experience events during study follow-up, thereby 

improving statistical power and accelerating therapeutic development timelines. The model's 

strong discriminative performance suggests utility for enrichment strategies in cardiovascular 

outcomes trials. Fourth, the identified feature importance hierarchy provides evidence-based 

guidance for clinical monitoring priorities, emphasizing the particular prognostic value of serial 

ejection fraction assessment, renal function surveillance, and consideration of age-related risk 

amplification. These findings could inform quality improvement initiatives and clinical practice 

guideline development. 

However, several important limitations warrant consideration. First, the relatively modest 
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sample size of 299 patients, while sufficient for initial model development and validation, limits 

the precision of effect size estimates and may inadequately represent rare patient phenotypes 

or uncommon clinical scenarios. External validation in larger, independent cohorts from diverse 

geographic regions and healthcare systems represents a critical next step before widespread 

clinical deployment. Second, the dataset's binary outcome variable (mortality versus survival) 

does not capture important distinctions between cardiovascular and non-cardiovascular 

mortality, potentially diluting signals for heart failure-specific prognostic factors. Future 

investigations incorporating cause-specific mortality outcomes could refine predictive accuracy 

for specific clinical contexts. Third, the cross-sectional nature of predictor measurement does 

not account for temporal evolution of clinical status, serial biomarker trajectories, or therapeutic 

intervention effects during follow-up. Longitudinal modeling approaches incorporating time-

varying covariates may enhance predictive performance and better reflect dynamic clinical 

reality. 

Fourth, the absence of several established prognostic biomarkers including natriuretic peptides 

(BNP, NT-proBNP), troponin, galectin-3, and soluble ST2 represents a notable limitation, as these 

markers have demonstrated incremental prognostic value in previous investigations. 

Incorporation of these biomarkers in expanded models may further improve risk prediction 

accuracy. Fifth, the logistic regression framework, while clinically interpretable, may not capture 

complex non-linear relationships and higher-order interactions that more flexible machine 

learning algorithms might exploit. Comparative analysis against gradient boosting machines, 

random forests, or neural network architectures could assess whether modest interpretability 

sacrifices yield meaningful performance gains. Sixth, the model was developed and tested within 

a single dataset without examination of performance variation across patient subgroups defined 

by age categories, sex, heart failure etiology, or ejection fraction phenotype. Subgroup-specific 

calibration and discrimination assessment would strengthen confidence in broad applicability. 

3.7 Methodological Considerations and Future Directions 

The statistical rigor of the present investigation provides confidence in the validity of reported 

findings, with appropriate train-test splitting preventing overfitting, z-score normalization 

ensuring fair coefficient comparison, and maximum likelihood estimation providing efficient, 

asymptotically unbiased parameter estimates under the assumed logistic model. The 

comprehensive evaluation framework encompassing discrimination metrics, calibration 

assessment, and clinical interpretability analysis offers a balanced perspective on model utility 

extending beyond simple accuracy reporting. The identification of statistically significant 

predictors through formal hypothesis testing provides evidence-weighted guidance regarding 

which clinical variables most reliably contribute to prognostic assessment. 

Future research directions could address the identified limitations through several 

complementary approaches. First, prospective external validation in independent patient 

cohorts would establish generalizability and identify potential recalibration needs for different 

populations. Second, extension to time-to-event modeling through Cox proportional hazards 

regression or parametric survival models would enable censoring accommodation and time-

dependent risk estimation. Third, incorporation of imaging-derived parameters including left 

atrial volume, right ventricular function, and advanced echocardiographic strain indices might 

capture additional prognostic information not reflected in conventional ejection fraction. Fourth, 

integration of emerging biomarkers, genetic risk scores, and multi-omics data platforms could 

unveil novel biological pathways contributing to heart failure progression. 

Fifth, development of dynamic risk prediction models updating prognostically as new clinical 

data accumulate during longitudinal follow-up would better reflect real-world clinical scenarios 
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where risk reassessment occurs repeatedly. Sixth, investigation of risk prediction model impact 

on clinical decision-making and patient outcomes through randomized implementation trials 

would provide definitive evidence regarding clinical utility. Such trials could examine whether 

model-guided therapy intensification or monitoring strategies improve survival, quality of life, or 

healthcare resource utilization compared to standard care. Seventh, incorporation of patient-

reported outcomes, functional status assessments, and quality of life measures would provide a 

more holistic perspective on prognosis extending beyond mortality to encompass the full 

spectrum of patient-centered outcomes. Finally, examination of algorithmic fairness across 

demographic subgroups and socioeconomic strata would ensure equitable performance and 

identify potential disparities requiring targeted mitigation strategies. 

 

4 Conclusion 

This investigation developed and validated an interpretable logistic regression-based predictive 

model for mortality risk assessment in heart failure patients, achieving strong discriminative 

performance (AUC 0.872) and favorable calibration characteristics. Through systematic feature 

importance analysis, we identified follow-up time, ejection fraction, age, and serum creatinine as 

the most influential prognostic determinants, with the model successfully stratifying patients 

into clinically meaningful risk categories. The transparent, clinically interpretable nature of the 

modeling framework facilitates integration into existing care pathways and supports evidence-

based risk communication with patients. While acknowledging important limitations including 

modest sample size, absence of external validation, and restriction to baseline clinical data, the 

findings demonstrate the feasibility and potential clinical utility of data-driven risk prediction in 

heart failure management. Future work should focus on external validation in diverse 

populations, incorporation of additional biomarkers and imaging parameters, extension to 

longitudinal risk modeling, and rigorous evaluation of clinical implementation strategies through 

randomized controlled trials. Ultimately, integration of such predictive tools within 

comprehensive heart failure care programs holds promise for enabling personalized medicine 

approaches that optimize therapeutic strategies according to individual patient risk profiles, 

potentially improving outcomes through early identification and intensive management of high-

risk populations while avoiding unnecessary intervention in low-risk patients. 
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