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BLN-YOLO: A Lightweight Neural Network Framework for
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Abstract: This paper introduces BLN-YOLO, a lightweight model improved from YOLOv8n, addressing two key
challenges in forest fire detection: poor real-time performance of traditional methods and the
accuracy-efficiency trade-off in lightweight architectures. The model employs a three-stage optimization: 1)
Integrating Local Spatial Attention (LSKA) in the backbone to enhance fire feature extraction; 2) Adopting a
cross-scale BiFPN feature pyramid in the neck for efficient multi-scale fusion and small-target detection; 3)
Replacing detection heads with Low-rank Decomposed (LSCD) structures to reduce parameters. For edge
deployment, a two-stage compression is proposed: structured pruning via LAMP criteria removes redundant
weights, while knowledge distillation transfers teacher model's feature responses and decision boundaries to
mitigate accuracy loss. Experimental results show BLN-YOLO achieves 79.4% parameter reduction, 0.6% mAP
improvement, 77.4% memory savings, and 11.4% faster inference compared to YOLOv8n, meeting
ultra-real-time detection requirements.
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1 Introduction

With the growing impact of global climate change, the frequency and scale of forest fires
are on the rise, posing severe threats to global ecological security and economic development.
Forest fires, among the most dangerous enemies of forests and the most terrifying disasters in
agriculture and forestry, can cause devastating consequences to forest ecosystems!”. As a
country with diverse terrains, China has a relatively high forest coverage rate of approximately
23% globally. The significant casualties and economic losses caused by forest fires highlight
the crucial importance of timely and effective fire detection. To minimize casualties and
economic losses from wildfires, timely and effective forest fire detection is of great significance.

Forest fire detection methods mainly include multi-sensor technology?, satellite remote
sensing®, and UAV™. Multi-sensor technology is limited by the narrow monitoring range of
single sensors; large-scale deployment increases costs and easily causes network congestion.
Satellite remote sensing, despite wide coverage, has long operational cycles, hindering rapid
detection. UAVs or fixed monitoring stations, relying on image data and deep learning
algorithms, excel in flexibility and response speed, becoming research focuses. However, their
dependent server-side models with heavy computation and numerous parameters are hard to
deploy on resource-constrained devices, restricting real-time detection.

In early practices of applying digital image processing to forest fire detection, Thou-Ho et
al.”! pioneered a video processing-based early fire warning method. It first extracted flame- and
smoke-related pixel features via RGB color model-based algorithms, then further quantified
these features using disorder measurement methods.In 2015, Yuan et al.® proposed a
UAV-based method for forest fire detection and tracking. This method comprises two core
components: front-end information acquisition and back-end image processing. The UAV, as
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the front-end tool, captures real-time images of fire scenes from the air. These image data are
then transmitted to the ground control center for subsequent processing and analysis.In 2018,
Mahmoud et al.”” proposed an innovative forest fire detection algorithm. It first adopted
background subtraction (MRDB) to effectively eliminate interference from moving regions. In
2023, Giwa et al.® developed a new flame-characteristic-based color space method, which
significantly highlighted differences between flame and non-flame pixels, thereby optimizing fire
recognition accuracy. Both studies focused on forest fire detection, aiming to boost detection
precision.In 2023, Wang et al.® proposed an improved YOLOv7-based model, YOLO-Fire, for
forest fire detection. To enhance detection performance, the study introduced several
optimization techniques. Firstly, to accelerate detection speed, the model adopted the
bottleneck structure of MobileNetV3 and replaced traditional convolutions with depth-wise
separable convolutions.In the same year, Li et al." developed YOLO-SCW, an improved
YOLOv7 model for forest fire smoke detection. This model integrated SPD-Conv layers into
YOLOv7, effectively reducing the loss of small-target features during feature extraction.In the
research on lightweight model-based forest fire recognition technology,In 2020, Liu et all'!
proposed a lightweight forest fire detection model based on SqueezeNet. By replacing
traditional convolutional layers with fire modules, the model significantly reduced the number of
parameters and computational complexity. Experimental results showed that it achieved an
mAP of 85.2% on the forest fire dataset and could run at over 20 frames per second on
embedded devices.In 2021, Zhang et al."? developed a lightweight forest fire detection method
based on EfficientDet. Through compound scaling that simultaneously optimizes network depth,
width, and resolution, the method balanced high performance and low computational cost.

This study investigates the lightweight model YOLOv8n and validates its performance.
Given that YOLOv8n exhibits suboptimal trade-off between real-time capability and accuracy
as well as high parameter count in forest fire detection, this study proposes a novel forest fire
recognition model, BLN-YOLO.

In this study, the Local Spatial Key Attention (LSKA)" mechanism is incorporated into the
SPPF layer within the backbone network of the YOLOv8 model to further enhance the detection
accuracy and robustness of the model. To improve detection accuracy for targets of varying
sizes and further reduce the model's computational cost, this study replaces the NECK network
in YOLOv8n with the Bidirectional Feature Pyramid Network (BiFPN)™.

To further lightweight the model, this study replaces the original detection head of YOLOv8
with the Lightweight Shared Convolutional Detection (LSCD)". By introducing strategies such
as shared convolution, this study significantly reduces the model's parameter scale, thereby
achieving model lightweighting.Then, This paper proposes the use of the Layer-Adaptive
Magnitude-based Pruning (LAMP)'® technique to further compress and optimize the
BLN-YOLO model, significantly reducing its complexity, improving inference speed, and
enhancing its adaptability for deployment on resource-constrained edge devices.Finally, this
paper employs knowledge distillation”"®1"9 - ytilizing the unpruned BLN-YOLO model as the
teacher model to guide the training of the pruned student model, thus enabling effective
transfer of knowledge from the teacher model to the student model.

2 Materials and Methods

2.1 Materials

This paper collected forest fire images from multiple sources and channels to construct a
comprehensive dataset, with special attention to forest fire situations in various regions,
different terrain environments and various weather conditions. These images mainly come from
news screenshots, on-site photos provided by firefighters, and pictures collected by social
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workers during field work. Figure 1 shows the specific information of the dataset. To fully verify
the generalization ability of the model, based on different terrain conditions, this study selected
three typical forest terrains: mountainous areas, plains and hills, and collected fire image data
from these areas respectively. Meanwhile, the dataset includes both daytime and nighttime
scenes.

Figure 1 Examples of the forest fire dataset

In current research, due to the limited number of datasets related to forest fires and the
great difficulty in artificially constructing real fire scenes, this study has conducted data
augmentation on the dataset and divided it into training set, validation set and test set to
effectively address this issue.In total, 11,800 images were used for experimentation, consisting
of 6,600 originally collected images and 5,200 augmented images.To avoid data leakage,
augmentation was applied only to the training set.The final dataset was randomly spilit into
training (7,000 images), validation (2,400 images), and test (2,400 images) sets,maintaining a
6:2:2 ratio. Table 1 presents the class distribution of the forest fire dataset used in this study.

Table 1 Training Set and Validation Set Division

Subset Original Augmented Total Fire Non-Fire
Training 4,200 2,800 7,000 3,850 3,150
Validation 1,200 1,200 2,400 1,300 1,100
Test 1,200 1,200 2,400 1,250 1,150
Total 6,600 5,200 11,800 6,400 5,400
2.2 Methods

YOLO, short for You Only Look Once™, is a target detection algorithm first proposed at
CVPR in 2016. It redefines the target detection task as a regression problem and directly
predicts the location and category of targets from input images through a single end-to-end
network architecture. This innovative "detection-as-regression" approach greatly simplifies the
detection process, enabling the entire training process to be efficiently completed in one
operation. YOLOv8?" is one of the most mainstream target detection algorithms currently, with
excellent detection efficiency.In contrast to YOLOv5%, YOLOv8 does away with the
convolutional configurations in the upsampling phases of both the Feature Pyramid Network
(FPN)#! and Path Aggregation Network (PANet)*!. Across the entire model, it swaps out the
C3 module for the C2F module and employs a decoupled head design in place of the original
head architecture.

In forest fire scenarios, more lightweight models can offer faster detection efficiency and
are easier to deploy on edge devices. Thus, BLN-YOLO, improved based on the YOLOv8n
model, better meets the requirements for real-time detection.

Based on YOLOv8n, BLN-YOLO introduces the LSKA attention mechanism into the SPPF
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layer to enhance feature extraction capability, adopts the bidirectional cross-scale BiFPN
feature pyramid to replace the original neck network for optimizing feature fusion and reducing
redundant connections, and uses the LSCD detection head based on low-rank decomposition
to achieve lightweight of the detection head. These modules improve the network structure of
the YOLOv8 model, enhancing the model's detection capability while making it more lightweight
to meet the real-time requirements of forest fire detection. Figure 2 shows the structure of the
original YOLOv8n model, and the network structure of BLN-YOLO is shown in Figure 3

[P Y-

Figure 2 YOLOVS8 network structure diagram
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Figure 3 BLN-YOLO network structure diagram

2.2.1 Large Separable Kernel Attention

In the object detection framework of YOLOVS, the Spatial Pyramid Pooling - Fast (SPPF)
layer plays a crucial role, whose main function is to achieve effective fusion of multi - scale
features. SPPF captures spatial information of different scales by applying pooling windows of
different sizes on feature maps at various levels, thereby enhancing the model's ability to adapt
to changes in target sizes. First, SPPF performs dimension reduction on the number of
channels of the input feature map through 1x1 convolution. This step not only reduces the
number of parameters but also improves the expressive ability of the feature map. Then, SPPF
uses multiple maximum pooling layers (MaxPool2d) to perform pooling operations of different
scales on the feature map. Through carefully designing pooling layers with different kernel
sizes, it ensures that while maintaining the spatial dimensions of the feature map, it can
effectively integrate feature information of different scales. The pooled feature maps are
concatenated in the channel dimension. This process fuses multi - scale feature information
into a single feature map, thus providing rich contextual information for subsequent object
detection. Finally, the concatenated feature map adjusts the number of channels through
another 1x1 convolution layer to match the input requirements of the subsequent layers in the
network, and at the same time further fuses features of different scales to generate the final
output feature map. The structure diagram of SPPF is shown in Figure 4.

About the author: Xiong Zijian, Chengdu, Sichuan, Research interests: Artificial Intelligence
Corresponding author: Xiong Zijian, Email: 1162531550@qqg.com
14 -



ATIEHE E—E15

Y

SPPF
Conv
Y

MaxPool2d
MaxPool2d
Y
MaxPool2d
\
Concat
A
Conv

Figure 4 SPPF network structure diagram

Although the SPPF layer in YOLOV8 has the advantages of multi-scale feature extraction
and enhancing model expressiveness, it also has some limitations. For example, it may
overlook the concentration of attention on specific regions during the feature extraction process,
leading to insufficient capture of certain key information. To address this issue, this paper
introduces the LSKA attention mechanism into the SPPF layer, which can effectively improve
the problem. Through large kernel separable convolution operations and attention mechanisms,
LSKA enhances the model's ability to extract spatial and channel information, thereby

improving the model's representation capability and the accuracy of object detection. The
structure diagram of LSKA is shown in Figure 5
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Figure 5 LSKA network structure diagram

In Figure 5, 1x(2d-1) DW-Conv is a depthwise convolution (DW-Conv for short) with a
convolution kernel size of 1x(2d-1). This convolution operation convolves the input features in
the depth direction, enabling the capture of local spatial information. (2d-1)x1 DW-Conv is
another depthwise convolution with a kernel size of (2d-1)x1. This operation performs
convolution in the width direction, further capturing local spatial information.The outputs of
LSKA, as shown in Equations (1)—(4).

MC = S W€ x (Y w¢ * OC)#(1)
lew 2d-1)x1 H,zw 1x(2d-1)
ZC= I WS *(3 w’, xXO#Q)

Hw Eixt Hw ix)
AC =W, % ZC#(3)
TC = AC®F 4(4)

These formulas outline the LSKA attention mechanism: First, split spatial convolutions
(e.g., 1x(2d-1) and (2d-1)x1 depthwise convolutions) in M€ and ZC extract local spatial
information from O and XC along length and width, reducing large-kernel computation. Next,
a 1x1 convolution (1x1) fuses cross-channel features in Z€ to form A€, which integrates
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multi-channel and spatial information. Finally, AC¢ is element-wise multiplied (Hadamard
product, ® ) with attention weights FC¢?¥ to output T€, enhancing key information and focusing
the model on useful content.

In this study, the LSKA layer is designed to be placed in the SPPF structure after the

concatenation of tensors that have undergone three MaxPool2d operations, as shown in Figure
6.
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Figure 6 LSKA_SPPF network structure diagram
2.2.2 BIFPN

In the field of object detection, feature fusion is one of the key technologies to improve
model performance. The Feature Pyramid Network (FPN) is a popular feature fusion
technology, which has also been applied and further optimized in YOLOv8. As shown in Figure
7, the feature pyramid in the neck network of YOLOv8 adopts a PAN-FPN structure similar to
that of YOLOvVS, namely the Path Aggregation Network (PANet). Through bottom-up and
top-down paths, PANet fuses feature maps of different scales, realizes cross-scale information
transmission, enhances the model's ability to recognize multi-scale objects, and enables it to
locate objects of different sizes more accurately.

- O

Figure 7 PANet network structure diagram

p7

pé

SRk

but also raises the model storage requirements and training difficulty due to the increased
number of parameters. To avoid the increase in parameters, inspired by the Bidirectional
Feature Pyramid Network (BiFPN), this study adopts its structure to optimize the model, aiming
to solve the above problems of PANet. The advantages of BiFPN are as follows: first, it
removes nodes connected only to a single input, simplifies the network structure, and realizes
effective integration of multiple features while reasonably controlling the amount of computation;
second, it directly leads an additional path from the original input to the output node at the same
level, enhancing feature fusion; third, it introduces a weighted fusion mechanism, which can
adaptively learn the importance of different features, and this is a significant difference from
PANet.Figure 8 shows the network structure diagram of BiFPN.
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Figure 8. BIFPNnet network structure diagram

Unlike PANet, which only adopts a unidirectional design of top-down and bottom-up paths,
BiFPN innovatively constructs reusable bidirectional path modules (including both top-down
and bottom-up directions). By iterating these modular feature network layers multiple times, it
achieves multi-level and in-depth feature fusion and interaction. The formulas for the two fusion
processes (top-down and bottom-up) of BiFPN are shown in Equations (5) and (6).

w; - Pl6n+w2.

Pd=Conv ( i Y(5)

Wt wyt+e

w - Pltaw, - P+ resize (P2

P = Conv ( = Y(6)
Wt w,tw;te

In the BiFPN feature fusion mechanism, for the intermediate featurePgdof the 6th layer in
the top - down path, its input comes from the input P’ of the current level and the down -
sampled featurePof the upper level. For the output featureP"of the 6th layer in the bottom - up
path, it integrates the input i6“of the current level, the intermediate featurePgdof the same level,
and the up - sampled featureP2"of the lower level.nand, o'enable each path to perform feature
transformation using an independent weight matrix, and the other layers are also constructed
following a similar cross - scale fusion logic. This multi - level reuse “+” weighted fusion
mechanism allows the network to achieve more refined and effective feature fusion while
maintaining computational efficiency. It not only improves the fusion efficiency but also
enhances the model's ability to learn features of different scales, which is of great significance
for visual tasks such as object detection.

2.2.3 LSCD

The detection head of YOLOVS is a key part of the model, but the BatchNorm (batch
normalization) processing method adopted by YOLOVS is difficult to adapt to forest fire
detection: lightweight models need to be deployed on limited resources and often use small
batch sizes. However, the performance of BatchNorm depends on the statistical characteristics
of batch data. A small batch size will make the mean and variance unable to accurately reflect
the dataset distribution, which easily causes feature distribution shifts and weakens the ability
to stably recognize forest fire features. The LSCD lightweight detection head uses GroupNorm
(group normalization) instead of BatchNorm, taking advantage of GroupNorm and shared
convolution. It can minimize computational load and complexity while maintaining effective
fusion of feature information, and has advantages such as better performance in fire scenarios
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and reduced dependence on small batch sizes.

Figure 9 is a diagram showing the operation method of GroupNorm.In Figure 9, N
represents the data batch axis, C the channel axis, and H, W the spatial axes. For an image
with an input size of [N, C, H, W], it first divides the channels into several groups (like the blue
parts in the figure), calculates the variance and mean within each group, and then normalizes
the data within the group based on these values. Its calculation range depends on the number
of channels C rather than the batch size N, so it is not dependent on the batch size.
GroupNorm is very practical in large - scale computer vision applications such as object
detection and video classification when computer memory is limited or a small sample size
needs to be set.

Group Norm

M ‘H

bl
oy

Figure 9 The operation method of GroupNorm

Figure 10 shows the architecture of the LSCD detection head. The GN_Conv1x1
component is a combination of GroupNorm and 1%1 convolution, where "1x1" refers to the size
of the convolution kernel. In the architecture, there are two yellow GN_Conv3x3 modules with
the same weights; there are also three blue Conv_Box modules and three red Conv_Cls
modules, with each module sharing weights internally. Each Conv_Box module is followed by a
Scale module, which applies a scaling factor to meet the detection needs of objects of different
sizes. In this way, the LSCD detection head can effectively handle multi-scale object detection

|: Conv_Box [— Scale
—_—
Conv_Cls
i
Conv_Box Scale
GN_Conv GN_Conv GN_Conv
Ll xt ® 3 3 ”
Conv_Cls
GN_Conv
I: Conv_Box [——» Scale
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Figure 10 LSCD netstructure diagram
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2.2.4 LAMP pruning

Although the BLN-YOLO model in this experiment uses a new lightweight design, the
improvement in FPS (frames per second) is not as significant as expected. To address this, this
study plans to introduce sparsity-based LAMP pruning to further optimize the model and
significantly boost FPS. LAMP pruning is a sparsity-based neural network optimization
technique. It evaluates the importance of each weight and selectively removes those
contributing less to the model output, thus reducing model complexity and computation. The
formula for calculating weight importance scores in LAMP pruning is shown in Equation (7).

2
score (u; w): = L]))z#ﬂ)

Ly (WIV]

score(u; w) represents the score of node u under weight matrix w. wlu] denotes the weight
value of node u in weight matrix w. It represents the sum of squared weights from node v to all
subsequent nodes (including u itself, which may refer to the range from u to leaf nodes in
specific contexts).In pruning training, as Speed-up (the proportion of pruned parameters)
increases, the model parameters and computation (GFLOPs) drop significantly, with the model
size reducing accordingly, while mAP@Q0.5 decreases sharply. This indicates that although
pruning reduces model complexity, it causes performance loss. Especially when Speed-up
reaches 1.35, the model size and computation shrink drastically, and mAP@Q0.5 also falls
significantly, as shown in Table 2. After pruning, the model parameters and computation
decrease noticeably, but the mAP value drops sharply, affecting performance. To address this,
this study adjusts parameters through callback training to restore or improve performance. On
the pruned model, training continues with a smaller learning rate to ensure the compact and
efficient model still achieves optimal performance in specific tasks. The results of callback
training are shown in Table 3.

Table 2 The corresponding model parameters for different Speed-up values

Speed-up mAP50(%) Parameter (M) GFLOPs size(MB)
1.0 85.8 1.81 6.1 315
1.05 60.6 1.49 5.8 3.1
1.10 67.3 1.19 5.6 25
1.15 60.3 0.96 53 2.1
1.20 50.8 0.81 5.1 1.8
1.25 43.4 0.71 49 1.6
1.30 35.7 0.65 4.8 1.5
1.35 30.9 0.63 4.7 1.4

Table 3 Comparison chart of model callbacks

Model mAP50(%) Parameter (M) GFLOPs size(MB)
before-finetune 30.9 0.63 4.7 1.4
After-fintune 86.7 0.63 4.7 1.4

As shown in Table 3, "before-finetune" refers to the BLN-YOLO model after pruning but
without callback training, with the mAP value dropping to 30.9%; "after-finetune" is the
BLN-YOLO model after pruning and callback training, with the mAP value rebounding to 86.7%.

2.2.5 knowledge distillation

In this paper, the BLN-YOLO model before pruning is used as the teacher model, and the
pruned model as the student model. Knowledge transfer is achieved through a dual loss
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mechanism: on the one hand, the error loss between the student model's predictions and the
real labels is calculated; on the other hand, the matching loss between the student's output and
the teacher's soft labels is measured. When the prediction distribution of the student model
tends to be consistent with the distribution of the teacher's soft labels, it indicates that it has
effectively inherited the teacher's feature expression ability.

As shown in Figure 11, the input data is processed by the teacher model (blue dashed box)
and the student model (green dashed box respectively). After passing through the Softmax
layer, soft labels, soft predictions and hard labels are generated. The loss of soft labels is
calculated by the distillation loss function, and the loss of hard labels by the student loss
function, which jointly guide the learning of the student model.
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Figure 11 The schematic diagram of knowledge distillation architecture

In knowledge distillation, first, the teacher model is trained to accurately capture patterns
and correlations in the data, usually using standard neural network training methods and loss
functions (such as cross-entropy loss), as shown in Equation (8). Then, the trained teacher
model is used to generate soft labels for input data. Next, the student model is trained. During
training, the student model not only minimizes the cross-entropy loss with real labels (Hard
Labels), as shown in Equation (9), but also minimizes the distillation loss with the teacher
model's soft labels, as shown in Equation (10). Finally, the student model's parameters are
updated by optimizing the total loss function, which is the weighted sum of cross-entropy loss
and distillation loss, as shown in Equation (11).

T CcXp (Zteacher/ T)

Preacher = #(8)
teache Z j CcxXp (Zteacher/ T)

=1
Leg =- Z y true,ilog (pstudent,i) #(9)
i
T

D .

T T T teacher,i

Lyp = " D KL(pteacher I pstudent) =T Z p teacher,ilog ( T )#(10)
g p student,i

The knowledge distillation results are shown in Table 4, where BLN (D) refers to the model
obtained after feature distillation on BLN (P). The optimized BLN (D) model has significantly
improved object detection accuracy, effectively compensating for the accuracy degradation
caused by pruning. LAMP channel pruning reduces model parameters and computational
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requirements by eliminating redundant channels; while the soft labels generated by the teacher
network contain rich feature correlation information, which can help the student model capture
deep connections in the data and enhance data understanding ability.

Table 4 Comparison of the model before and after knowledge distillation

Model mAP50(%)  Parameter (M) GFLOPs Size(MB) FPS
Yolov8n 86.4 3.01 8.1 6.2 130
BLN (P) 86.7 0.63 4.7 1.4 144
BLN (D) 87.0 0.62 46 14 147

2.3 Experimental environment and rparameter settings

The experiments were run on the Windows 10 system, with an Intel(R) Xeon(R) Platinum
8352V CPU @ 2.10 GHz (12 vCPUs) and a high-performance NVIDIA GeForce RTX 4090 GPU
with 24 GB memory. The deep learning framework used was Python 3.8 with CUDA 11.8. All
input images were uniformly resized to 640x640 pixels. Table 5 details the key hyperparameter
settings for the model training in this study, and all experiments were conducted under the
same parameter settings.

Table 5. Hyperparameters in the Model Training Process

Type Set
Epoch 300
Batchsize 32
Learning rate1 0.01
Learning rate2 0.0001
Workers 4

2.4 Evaluation of performance metrics

In this paper, the evaluation of performance metrics is conducted through a
comprehensive consideration of four key dimensions: the model's mean average precision
(mAP@Q0.5), parameter count, computational complexity, and FPS. The formulas are shown in
(11)-(13). In formula (11), AP; represents the average precision of class i, which is calculated as
the number of correctly detected targets (TP) for that class divided by the sum of the number of
correct detections, false detections (FP), and the total number of real targets (N) in that class,
and it measures the detection accuracy. In formula (12), mAP@Q0.5, a core performance metric
in the field of target detection, measures the average detection accuracy of the model under
different Intersection over Union (loU) thresholds. An loU threshold of 0.5 means that the
overlapping area between the model-predicted bounding box and the real bounding box is at
least 50%. The parameter count is directly related to the model's complexity and deployment
feasibility, reflecting the total number of trainable parameters in the model. A smaller parameter
count makes the model easier to deploy in resource-constrained environments. Computational
complexity, typically measured in GFLOPs (billions of floating-point operations), quantifies the
number of floating-point operations required for the model to perform one forward propagation,
serving as a crucial indicator for evaluating the model's computational efficiency. FPS refers to
the number of image frames processed per second; a higher FPS indicates a faster image
processing speed, with its calculation formula shown in (13).

Through the comprehensive evaluation of these performance metrics, this study aims to
achieve the optimal balance between model accuracy and efficiency, so as to meet the

About the author: Xiong Zijian, Chengdu, Sichuan, Research interests: Artificial Intelligence
Corresponding author: Xiong Zijian, Email: 1162531550@qq.com
-21-



ATIEHE E—E15

practical needs in different application scenarios.
TP

AP, =—TP;\’IFP e

Y, AP

mAP =Tix 100%#(12)

1000

FPS = speed

#(13)

3 Results

3.1 1ablation experiment

First, the integration of the LSKA module into the model increases the mAP@Q0.5 to 87%,
but it also leads to an increase in the number of parameters, computational load, and model
size. Second, the incorporation of the Bifpn module effectively reduces the parameter count by
34% and the computational load by 13% while keeping the mAP@Q0.5 almost unchanged, and it
significantly reduces the model size compared with YOLOv8n. Third, the introduction of the
LSCD module improves the mAP@0.5 by 0.6% on the basis of YOLOvS8, while achieving
multi-dimensional optimization—specifically, the computational load decreases by 22% from
3.01 M to 2.36 M, and the parameter count and memory size are reduced by 20% and 25%,
respectively. Finally, these modules are used in combination: when LSKA is used together with
Bifpn, or LSKA is used together with LSCD, the performance is improved with a relatively
moderate increase in model complexity; when Bifpn is used together with LSCD, the parameter
count, computational load, and memory size are significantly reduced by 54%, 26%, and 47%
respectively while maintaining the mAP@0.5. The BLN-YOLO model, formed by the
combination of all three modules, increases the mAP@Q0.5 from 86.4% to 87.3% and achieves a
good balance in terms of parameter count (decreasing by 37% from 3.01 M to 1.89 M),
computational load (decreasing by 34%), and memory size (decreasing by 38%) (see Table 6
for comparisons of ablation experiments).

Table 6 Performance Comparison of ablation experiment

Model LSKA Bifpn LSCD  mAP50(%) Parameter (M) GFLOPs Size(MB)
86.4 3.01 8.1 6.2
J 87.0 3.28 8.3 6.5
J 86.0 1.99 71 4.0
J 87.0 2.36 6.5 4.7
YOLOv8n
L] 87.0 2.27 7.5 4.6
J J 86.6 2.63 6.7 52
J J 86.4 1.63 6.0 3.3
J J J 87.3 1.89 6.2 3.9

Figure 12 plots the curves of loss values changing with training epochs for the YOLOv8n
baseline model and the improved BLN-YOLO model during training. It can be observed from
the curves that the YOLOv8n model shows stable learning performance during continuous
iterations, with its loss curve exhibiting good convergence and regularity. The YOLOv8n model
converges after about 250 iterations, with its final loss value stabilizing around 1.2. In
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comparison, the optimized BLN-YOLO model not only has a significant advantage in the
number of iterations required for convergence but also further reduces the final loss value,

showing better training results.
4

YOLOVEn
3.5

BLN-YOLO

3
2.5

loss

2
1.5

1
0.5

0 50 100 150 200 250 300 350

epoch

Figure 12 Loss function change curve

Table 7 compares the object detection results of the YOLOv8n and BLN-YOLO models in
multi-object and heavy smoke scenarios. It shows that the YOLOv8n algorithm fails to detect
some targets (missed detections) and achieves low mAP in multi-object scenarios, while in
heavy smoke scenarios, it incorrectly identifies non-targets as targets (false detections).

Table 7 Performance Comparison of ablation experiment
problem YOLOv8 BLN-YOLO

Missed Detection

False Detection

Low map

3.2 Comparison experiment of different models

In this experiment, six lightweight models—YOLOvV8n, YOLOv7-tiny?®, YOLOvY-T#
YOLOv10n®?®, SSD-Lite™®, and Faster-RCNN®—were selected for comparison with the
improved model. Different models were trained using the same training set, with identical
hyperparameter settings during training to ensure experimental fairness.
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Table 8 presents data obtained using the same dataset. It shows that the lightweight model
YOLOv7-tiny is slightly inferior to the baseline model YOLOv8n in this paper, with none of its
metrics exceeding those of YOLOv8n. As the lightweight version of YOLOV9, YOLOVO-T has a
higher mAP than YOLOv8n, with a slight reduction in parameters; meanwhile, its model size is
nearly half that of YOLOv7-tiny in terms of memory usage.YOLOv10n, the lightweight version of
YOLOV10, outperforms YOLOv8n in parameters, computation, and memory size but lags
behind in mMAP@Q0.5. SSD-Lite and Faster-RCNN adopt lightweight architectures but are overall
less effective than the YOLO series. Finally, the improved algorithm shows a significant
improvement in forest fire detection performance compared to other algorithms.Figure 13
shows the comparison between the number of parameters of each model and the mAP50
performance.

Table 8 Comparative experiments with different models

Model mMAP50(%) Parameter (M) GFLOPs Size(MB)

YOLOv8n 86.4 3.01 8.1 6.2
YOLOv7-tiny 85.8 6.01 13.2 12.3
YOLOVS-T 87.2 2.01 12.1 6.6
YOLOv10n 86.0 2.27 6.5 5.5
SSD-Lite 79.2 3.40 3.2 13.6
Faster-RCNN 82.2 12.6 28.3 50.4
BLN-YOLO 87.3 1.90 6.2 3.9

100

a 8o o

o

<

E

5

w0

v

L

o

3 0 H

g 40 @ VoiovEn @ VoiovT-iiny

o

g YOLOW9-T @ YOLOvIOn !

ps

E SSD-Lite @ Faster-RCNN
20 i

=

BLN-YOLO

0 3 6 9 12 15
Number of Parameters (MB)

Figure 13 The schematic diagram of knowledge distillation architecture

3.3 Model visualization analysis

Model channel feature visualization technology can clearly show the model's ability to
extract features at different levels of images by intuitively displaying feature maps of channel
activations. These features include not only basic visual elements (such as edge contours,
color contrasts, and texture details) but also deep semantic information. By in-depth analysis of
the feature response patterns of each channel, we can accurately identify the weak links in the
model's feature extraction, then optimize the network structure in a targeted manner,
strengthen the model's ability to capture key features, and ultimately improve the prediction
accuracy of object detection tasks. Figure 14 visualizes the channel feature maps of the
lightweight model designed in this study, where (a) is the original image from the dataset and (b)
is the visualized model channel feature map.
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(b)

Figure 14 Comparison of the Original Image with the Output Feature Map

To clearly show how the model's output layer focuses attention on different detection
targets, this study uses the improved Grad-CAM++3" algorithm to generate class activation
heatmaps. Through gradient-weighted calculations, the algorithm produces high-resolution
heatmaps that reflect the spatial positions of target objects and the model's prediction
confidence. When overlaid with the original image for visualization, these heatmaps intuitively
display the model's attention areas and prediction confidence levels for each detection target.
As an upgraded version of the Grad-CAM algorithm, Grad-CAM++ is a gradient-based
improved method for model interpretability analysis. It abandons Grad-CAM's approach of
assigning equal weights to all elements in gradient feature maps (i.e., obtaining feature map
weights by averaging gradients), and instead introduces an additional weighting mechanism to
assign different contributions to elements in gradient feature maps, as shown in Equation 14
and 15. Equation 15 is the weight formula for a}jc

Yo
=>>al¢ «relu (a—)#(14)
iy Y 0AF

i

9%yec
o (aA’F.)2
aij = 92Y 93Y¢ #(15)
+ a
(a A )2 %2 b{ PRE }

ij

¢ represents the current cIaSS|f|cat|on target of mterest; k denotes the k-th feature map
channel under analysis; i and j jointly locate the coordinates of a specific pixel on the feature
map of this channel; A* corresponds to the activation intensity map of the k-th channel; Y°
indicates the model's prediction probability for target ¢, with the requirement that this prediction
function must be differentiable. Table 9 shows the visualization results of the Grad-CAM++
algorithm. From the heat distribution map, it can be observed that the lightweight BLN-YOLO
model exhibits excellent spatial perception ability in flame target localization, intuitively
reflecting the model's mechanism for recognizing and localizing flame features.

Table 9. Visualization effect diagram of Grad-CAM++ algorithm

original image heatmap
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4 Discussion

To address the demand for real-time forest fire detection, this papaer proposes a
lightweight neural network model, BLN-YOLO. Through multi-module collaborative optimization
and model compression strategies, it solves problems such as high computational complexity
of traditional methods and poor adaptability to edge devices. During the experiment on
lightweight module design, it was found that although the adoption of the BiFPN feature
pyramid reduced the number of model parameters, the FPS (frames per second) decreased,
which was inconsistent with our expectations. After investigation, it was revealed that the
frequent scale transformations (such as interpolation and convolution adjustment) in the feature
fusion process led to higher operational complexity.

Subsequently, we used LAMP structured pruning to directly reduce the actual
computational load of the model by directionally removing low-contribution weights and
redundant channels, thereby offsetting the computational overhead caused by BiFPN. The
schematic diagram of pruning is shown in Figure 15.

before pruning after pruning

(a) (b)

Figure 15 Diagram of Pruning Operation Process

To address the issues of limited forest fire-related datasets and the difficulty in constructing
real fire scenarios, this study performed data augmentation on the dataset. In addition to basic
ordinary data augmentation, it included complex data augmentation (adopting random erasure
and Cutout image processing techniques to generate 4200 image samples) and dark channel®?
prior image dehazing algorithm enhancement (preprocessing and optimizing original samples
to tackle problems such as loss of image details, reduced contrast, and difficulty in effectively
extracting key texture features caused by haze interference in forest fire images). These data
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augmentation methods improve the generalization ability and robustness of the model, avoid
overfitting, and enable the trained model to better cope with complex situations in practical
applications. Table 10 presents the results of the forest fire dataset after being augmented by
random erasure, Cutout, and the dark channel prior dehazing algorithm.

Table 10 Comparison Table of Data Augmentation Effects

Original random erasure Cutout dark channel

5 Conclusions

In this study, to address the issues of poor real-time performance of traditional methods
and the difficulty in balancing accuracy and efficiency of lightweight models in forest fire
detection, we propose a lightweight neural network model BLN-YOLO, improved based on
YOLOv8n. Through multi-module collaborative optimization and model compression strategies,
the overall performance of forest fire detection is enhanced: The introduction of the LSKA
attention mechanism into the SPPF layer of the backbone network strengthens the ability to
extract fire features; the adoption of the BiFPN feature pyramid optimizes cross-scale feature
fusion, improving detection accuracy for multi-scale targets (especially small targets); and the
integration of the LSCD detection head achieves a lightweight design, significantly reducing the
parameter scale. Additionally, the two-stage compression strategy combining LAMP structured
pruning and knowledge distillation substantially reduces model complexity (79.4% parameter
reduction and 77.4% memory savings) while effectively mitigating accuracy loss, ultimately
achieving a comprehensive performance optimization with 0.6% mAP improvement and 11.4%
faster inference speed.

Ablation experiments and comparative experiments demonstrate that BLN-YOLO
outperforms mainstream lightweight object detection models in detection accuracy, model
lightweighting, and real-time performance, fully verifying the effectiveness of the proposed
improvement strategies. This model can meet the deployment requirements of
resource-constrained edge devices and provides an efficient and feasible technical solution for
real-time forest fire monitoring and early warning. Future research will further expand the
diversity and scale of datasets and optimize the robustness of fire detection under complex
meteorological conditions to enhance the model’s adaptability in practical scenarios.
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